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Abstract
Aim of study: Use LiDAR-derived vegetation and terrain characteristics to develop abundance and occupancy predictions for two 

terrestrial salamander species, Plethodon glutinosus and P. kentucki, and map abundance to identify vegetation and terrain characteristics 
affecting their distribution. 

Area of study: The 1,550-ha Clemons Fork watershed, part of the University of Kentucky’s Robinson Forest in southeastern Kentucky, 
USA. 

Material and methods: We quantified the abundance of salamanders using 45 field transects, which were visited three times, placed 
across varying soil moisture and canopy cover conditions. We created several LiDAR-derived vegetation and terrain layers and used these 
layers as covariates in zero-inflated Poisson models to predict salamander abundance. Model output was used to map abundance for each 
species across the study area. 

Main results: From the184 salamanders observed, 63 and 99 were identified as P. glutinosus and P. kentucki, respectively.  
LiDAR-derived vegetation height variation and flow accumulation were best predictors of P. glutinosus abundance while canopy cover 
predicted better the abundance of P. kentucki. Plethodon glutinosus was predicted to be more abundant in sites under dense, closed-canopy 
cover near streams (2.9 individuals per m2) while P. kentucki was predicted to be found across the study sites except in areas with no vege-
tation (0.58 individuals per m2).

Research highlights: Although models estimates are within the range of values reported by other studies, we envision their application 
to map abundance across the landscape to help understand vegetation and terrain characteristics influencing salamander distribution and aid 
future sampling and management efforts.
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Introduction
Terrestrial salamanders in the family Plethodontidae 

(i.e., lungless salamanders) are important components of 
many forest ecosystems, especially in eastern North Ame-
rica (Burton & Likens, 1975a; Welsh & Droege, 2002; 
Davic & Welsh, 2004). They can reach high densities 

(Burton & Likens, 1975b; Semlitsch et al., 2014; Milano-
vich & Peterman, 2016), influence food webs and leaf lit-
ter decomposition by predating on invertebrates (Wyman, 
1998), and serve as prey for a wide variety of animals 
(Davic & Welsh, 2004). Yet, some species appear sensiti-
ve to land-use change, especially timber harvest. Studies 
have shown that terrestrial salamander populations can 
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decline immediately following harvesting (Homyack & 
Haas, 2009; Tilghman et al., 2012) and may take up to 60 
years to obtain pre-harvest abundances (Petranka et al., 
1993; Ash, 1997). Due to this sensitivity to timber har-
vest, terrestrial salamanders have been included in forest 
management plans (USDA Forest Service, 2004). 

To effectively manage salamanders, it is essential to 
understand how habitat characteristics affect their distri-
bution and abundance across the landscape. Plethodontid 
salamanders are lungless and rely solely on cutaneous res-
piration. This physiological constraint limits surface acti-
vity to cool and moist conditions (Jørgensen, 1997). Fur-
thermore, most species have small home ranges and low 
vagility (Liebgold et al., 2011). Collectively, most studies 
have suggested that the distribution and abundances of 
salamanders is primarily influenced by fine-scale habitat 
conditions related to temperature and moisture. For exam-
ple, Peterman & Semlitsch (2013), using a 3-m resolution 
National Elevation Dataset in a GIS and temperature data-
loggers to derive spatial covariates, found that salamander 
abundance was best predicted by indices related to cooler 
temperatures and higher moisture, including denser ca-
nopy cover, especially in ravine habitats and areas on the 
landscape with low solar exposure and high topographic 
wetness. Thus, knowledge of fine-scale habitat attributes 
is essential to salamander management (Stauffer, 2002).

Light detection and ranging (LiDAR) technology can 
potentially provide detailed vegetation and terrain infor-
mation needed for accurately describing fine-scale ha-
bitat important for salamanders. LiDAR data consist of 
three-dimensional point clouds with sub-meter positional 
accuracy. These data can be processed to segment points 
into ground and vegetation points. Ground points are 
used to create high-resolution digital elevation models 
that represent terrain surfaces and vegetation points can 
be analyzed to develop vegetation metrics that describe 
vegetation structure (Reutebuch et al., 2005). LiDAR-de-
rived vegetation metrics such as canopy height, canopy 
cover, canopy heterogeneity, and understory density have 
been used to characterize the habitat of a number of birds 
and bats (i.e., Goetz et al., 2010; Tattoni et al., 2012; 
Eldergard et al., 2014; Jung et al., 2012; Müller et al., 
2013), nonflying mammals (Zhao et al., 2012; Coops et 
al., 2010; Nelson et al., 2005), invertebrates (Müller et 
al., 2014; Vierling et al., 2008; Müller & Brandl, 2009), 
lizards (Sillero & Gonçalves-Seco, 2014) and turtles (Ya-
mamoto et al., 2012; Long et al., 2011).  However, there 
are no studies using LiDAR-derived vegetation metrics 
to characterize salamander habitats and construct models 
predicting local salamander population size. One proba-
ble reason for this in the Appalachian Mountain region 
is the complex vegetation conditions consists of dense, 
close-canopy deciduous forest with numerous tree spe-
cies and highly dissected terrain conditions (Müller et al., 
2014; Hamraz et al., 2017).

In this study, we used LiDAR data to describe fine-sca-
le vegetation (i.e., canopy cover vegetation height, and 
vegetation height standard deviation) and terrain charac-
teristics (i.e., slope’s exposure to light, and water flow 
accumulation) in the Appalachian mountain region of 
eastern Kentucky. We used LiDAR-derived vegetation 
and terrain metrics to develop predictive abundance and 
presence models of two similar species of terrestrial sa-
lamander, the Slimy Salamander (Plethodon glutinosus) 
and the Cumberland Plateau Salamander (Plethodon ken-
tucki). Lastly, we used these models to map salamander 
abundance across the study area and gain an understan-
ding of the LiDAR-derived vegetation and terrain charac-
teristics influencing their abundance.

Methods
Study area

Research was conducted at The University of 
Kentucky’s Robinson Forest (RF), located in the rugged 
eastern section of the Cumberland Plateau region of sou-
theastern Kentucky in Breathitt, Perry, and Knott coun-
ties. Due to access restrictions, the study area was limited 
to the 1,550-ha Clemons Fork watershed (Fig. 1). The te-
rrain across the study area, and RF in general, is characte-
rized by a branching drainage pattern, creating narrow ri-
dges with sandstone and siltstone rock formations, curving 
valleys and benched slopes. The slopes are dissected with 
many intermittent streams (Carpenter & Rumsey, 1976) 
and are moderately steep ranging from 10 to over 100 % 
facings predominately northwest and southeast, and ele-
vations ranging from 252 to 503 m above sea level. Vege-
tation is composed of a diverse contiguous mixed meso-
phytic forest made up of approximately 80 tree species 
with northern red oak (Quercus rubra L.), white oak (Q. 
alba L.), yellow-poplar (Liriodendron tulipifera L.), 
American beech (Fagus grandifolia E.), eastern hemlock 
(Tsuga canadensis (L.) Carr.) and sugar maple (Acer  
saccharum Marshall) as dominant and co-dominant spe-
cies. Understory species include eastern redbud (Cercis 
canadensis L.), flowering dogwood (Cornus florida L.), 
spicebush (Lindera benzoin L.), pawpaw (Asimina triloba 
(L.) Dunal), umbrella magnolia (Magnolia tripetala L.), 
and bigleaf magnolia (M. macrophylla Michx.) (Carpen-
ter & Rumsey, 1976; Overstreet, 1984). Average canopy 
cover across RF is about 93 % with small opening scatte-
red throughout. Most areas exceed 97 % canopy cover, 
but recently harvested areas have an average cover as low 
as 63 %. After being extensively logged in the 1920’s, RF 
is considered second growth forest ranging from 80 to 
100 years old and is now protected from commercial log-
ging and mining activities, typical of the area. Seventeen 
species of salamander, most of which belong to the 
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Figure 1. Topography of the study area (1,400 ha) within Robinson Forest (4,250 ha) located in Breathitt, Knott, and Perry 
counties in southeastern Kentucky (Lat. 37.4611, Long. -83.1555).

family Plethodontidae (Schneider, 2010; Petranka, 1998), 
are found at RF. Some of the most abundant terrestrial 
salamander species are P. glutinosus and P. kentucki, 
which are the focus of this study. These lungless salaman-
ders prefer cool moist habitats and are most active on the 
ground surface at night after rain events (Petranka, 1999).

LiDAR derived data

A high-density (~ 40 pt m-2) LiDAR dataset was ac-
quired in the summer of 2013 during leaf-on season for 
collecting detailed vegetation information across RF. The 
parameters of the LiDAR system and flight are presen-
ted in Table 1. A set of five LiDAR-derived variables 
were created to predict and map salamander abundance 
across the study area. LiDAR ground points were used to 
create a 0.6 m resolution digital elevation model (DEM) 
with average as the cell assignment method and natural 
neighbor as the void fill method using the “LAS dataset to 
Raster” tool in ArcMap 10.2. Terrain variables included 
two raster layers based on the DEM: hillshade (HS) and 
flow accumulation (FA), which were created using the 
“Spatial Analyst” tool also in ArcMap 10.2. The HS layer 
was used as a proxy for direct sun exposure, which consi-
dered the average daily position of the sun when field data 
was collected (175° azimuth and 70° altitude). The FA la-

yer represents the number of upslope cells theoretically 
flowing onto a given cell, which provides an indication of 
relative humidity. These two layers were resampled into a 
courser 30.5 m resolution using the average cell value to 
encompass entire field transects into single cells and con-
sider a more appropriate cell size to meaningfully capture 
site variations across the study area.

LiDAR vegetation points were normalized using the 
DEM to calculate elevation above ground and used to 
create three vegetation variables: canopy cover (CC), 
vegetation height (VH), and vegetation height standard 
deviation (VHSD). The CC layer was calculated as the 
percentage of vegetation points above 5 m from ground 
level to the total points for all 0.6-m cells covering the 
study area. The 5 m threshold was selected to avoid con-
sidering LiDAR points representing ground vegetation, 
typically up to 3 m tall across the study area, and to be 
above the maximum elevation change error of the DEM 
found to be ~1.5 m (Contreras et al., 2017). Each cell was 
considered covered and given a value of one if the per-
centage was greater than 50 % and not covered and given 
a value of zero otherwise. For data consistency, the CC 
layer was resampled into coarser 30.5 m resolution using 
the average cell values. The VH layer was calculated as 
height of the tallest LiDAR vegetation point inside the 
0.6 m cell size and then resampled to the courser 30.5 
m resolution using the maximum cell value. Lastly, the 
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VHSD layer was calculated as the standard deviation of 
the vegetation height of 0.6 m cells within coarser 30.5 
m cells. This layer was created to represent the variabi-
lity of vegetation heights, which tends to be higher in 
recently harvested areas and lower in areas with fully  
closed canopies. 

Sampling design

To quantify the abundance of salamanders, we used a 
stratified sampling where 45 field transects were surveyed 
across varying soil moisture and canopy cover conditions 
throughout the study area (Fig. 2). We created an integra-
ted soil moisture index (SMI) layer and used the CC layer 
to identify the location of these transects. The GIS-based 
SMI layer (Iverson et al., 1997) was developed to deter-
mine soil moisture, which considers terrain slope, direct 
sun exposure (hillshade), ground curvature, and soil water 
holding capacity data from the United States Geological 
Survey. The SMI layer had a 10-m resolution with each 
cell representing relative soil moisture across the study 
area and was resampled into a coarser 30.5-m resolution 
using the average cell values.  The SMI layer was clas-
sified into high, medium, and low soil moisture classes 
selecting threshold values resulting in an equal amount 
of area in each class (516.7 ha).  The CC layer was also 
classified into three classes: low (0-50 % covered) me-
dium (50-75 % covered), and high (75-100 % covered) 
canopy cover. Lastly, five transects were randomly loca-
ted in each soil moisture/canopy cover combination using 
the center point of the raster cells as the transect location, 
which were not allowed in areas within 5 m from existing 

roads and streams to avoid their effects on detected sala-
manders.

In field data collection

The location of the mid-point of transects was de-
termined using a Trimble Juno SB GPS handheld unit 
with a 6m-precision. The 30.5 m transects were laid out 
along the contour line and flags were placed at the ends 
and mid-point to establish a clear line of sight along their 
length. We used a visual encounter survey to collect sa-
lamander count data. Transects were surveyed at night-
time on days following rain events during May – June 
of 2014. They were surveyed using a headlamp to search 
inside a 1 m swath along either side of its length. En-
countered salamanders were captured, placed in Ziploc 
bags, and left at the same place where they were found 
to minimize disturbance to the site. After transects were 
searched, caught salamanders were examined and species  
was recorded.

All transects were sampled three times, as required 
for presence and abundance modeling to account for im-
perfect detection (Royle 2004; MacKenzie et al., 2002). 
Transect locations were grouped so several could be ac-
cessed in one night, then groups were randomly surveyed 
with no transects being revisited within three days of the 
last survey. We also collected six sample-specific detec-
tion variables at each transect during each visit, namely: 
litter depth (cm), Julian date, wind speed, barometric 
pressure (mmHg), air temperature (°C) using a Kestrel 
2500 weather meter, and soil moisture (%) using an Ex-
tech MO750 soil moisture probe. 

A 15.2-m buffer was placed around each transect, co-
vering an area of 0.17 ha, to maintain consistency with 
the resolution of the covariates. This buffer area was used 
to extract a single value for the covariates associated with 
each transect for model development purposes.

Data analysis

Before model development, we used a Pearson’s co-
rrelation matrix to examine the relationship among the 
five LiDAR-derived variables as well as the SMI. Due to 
the large amount of transect surveys with no salamander 
observations, we used zero-inflated abundance models 
that accounted for imperfect detection of individuals. 
Specifically, we used the statistical function RunZIA 
(Wenger, 2007; Wenger & Freeman, 2008) in the R sof-
tware (R Development Core Team, 2008). The RunZIA 
function, based on N-mixture models (Royle 2004, Ro-
yle et al. 2005) and zero-inflated binomial occupancy 
model (MacKenzie et al. 2002), simultaneously estima-
tes occupancy (or presence), abundance and incomplete 

Table 1. LiDAR data acquisition parameters of dataset collected 
over Robinson Forest

Parameter Information/value

Date of acquisition May 28-30, 2013

LiDAR system Leica ALS60

Average flight elevation above 
ground 196.0 m

Average flight speed 105.0 knots

Pulse repetition rate 200 Khz

Flied of view 40°

Swath width 142.7 m

Usable center portion of swath 95%

Swath overlap 50%

Average footprint 0.15 m

Nominal post spacing 0.20 m
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detection. Essentially, this analytical method uses repea-
ted count data to estimate occupancy; if the site is occu-
pied, it estimates abundance based on a Poisson distri-
bution. In the RunZIA model (Eq. 1), Ni is the realized 
abundance at site i given the presence, presi is a binary 
value expressing whether salamanders are present at site 
i, and ki is the abundance at site i based on a Poisson 
distribution.  

𝑁𝑁𝑖𝑖 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 × 𝑘𝑘𝑖𝑖                          [1]

A total of 32 predictive models were then developed to 
estimate salamander abundance, considering all 31 unique 
combinations of these five predictive variables (HS, FA, 
CC, VH, VHSD) plus the SMI. In addition to these six 
abundance variables, all models included Julian date and 
the days since last precipitation event squared as detection 

variables because seasonal and weather variables have 
shown to greatly influence desiccation rates and affect 
surface activity, and thus detection probability (Petranka, 
1998; Peterman & Semlitsch, 2014). We ranked models 
based on the small sample size Akaike information crite-
rion (AICc) and the evidence ratio (ER), and the weighted 
Akiake criterion (W AICc) was used to determine the re-
lative performance of the best model. Lastly, models were 
run separately for both species to determine if there were 
differences in site preference.

In order to estimate abundance, separate model pa-
rameter estimates (β) for presence and abundance were 
output for the best model for each species using the Run-
ZIA. The parameter estimates were calculated based on a 
binary function for presence (Eq. 2) and an exponential 
function for abundance (Eq. 3). Using ArcMap the pa-
rameter estimates were applied to the raster file of each 

Figure 2. Location of field plots within the study area. First two letters in the abbreviated plot categories indicates level 
of canopy cover (CH = canopy cover high level, CM = canopy cover medium level, CL = canopy cover low level) and 
the second two letters indicates level of soil moisture (MH = soil moisture high level, MM = soil moisture medium level, 
ML = soil moisture low level). 
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covariate (X) using equations 2 and 3 to create a presen-
ce raster file and preliminary abundance raster filer for 
each species. Then equation 1 was applied to the resulting 
presence and abundance raster files to map the estimated 
abundance, given their presence.

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 = 𝐵𝐵𝐵𝐵𝐵𝐵(expit⁡(𝛽𝛽𝑜𝑜 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 +⋯+ 𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖))    [2]

𝑘𝑘𝑖𝑖 = exp⁡(𝛽𝛽𝑜𝑜 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + ⋯+ 𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖)          [3]

Results
The Pearson’s correlation matrix among LiDAR-de-

rived covariates showed a high correlation between CC 
and VH (r = 0.89) (Table 2). Despite this correlation, it is 
important to consider both variable as VH is required to, 
in general, distinguish between recently harvested areas 
and older forests, both often with relatively high CC. 
Another high correlation was found between SMI and HS 
(r = -0.81), which is expected as HS is used to compute 
SMI, for which reason no model included both covariates. 
Correlation among other pairs covariates were relatively 
low presenting values lower than 0.27, except for FA and 
SMI (0.42).

A total of 184 salamanders were observed from the 
three visits to each transect. P. glutinosus and P. kentucki 
were the most abundant, with a total of 63 and 99 obser-
vations, respectively. There were no salamanders obser-
ved in 63% of the visits (85 out of 135), which justified 
the use of a zero-inflated model to determine salamander 
abundance (Table 3).

Using AICc to evaluate models, we found that the 
best-supported model for both species was one with a 
zero-inflated Poisson (ZIP) assumption on abundance. 
Results from developing the 32 predictive models of P. 
glutinosus abundance show that the top-ranked model re-
tained VHSD and FA (Table 4, which shows only the top 
16 best-ranked models). This model has evidence of over 

26 times of, and about 96 % more likely to perform better 
than the second-ranked model (as shown by the evidence 
ratio and weighted Akiake criterion, respectively), which 
also contains HS. Also, VHSD and FA are present in most 
of the other high-ranked models, which likely indicate 
their influence in P. glutinosus abundance.

When examining the complete top-ranked model, 
none of the 95 % confidence intervals of the abundan-
ce parameter estimates overlap zero, which indicates the 
respective covariates are likely to be important in the mo-
del (Table 5). The coefficient estimates show an inverse 
effect of VHSD on abundance while FA has a direct re-
lationship, but for the presence portion of the model both 
covariates have a direct effect. A plot showing predicted 
abundance per transect (sampled area of 61 m2) against 
ranges of VHSD and FA values found across the study 
area, helps visualize the effect of these two predictors on 
P. glutinosus abundance (Fig. 3a). For example, on pla-
ces with homogeneous vegetation heights (i.e., closed 
canopy, dense forests), predicted salamander abundance 
ranges from 1.08 to 12.01 individuals per m2 based on 
FA values. Similarly, on places with FA near zero (near 
ridgetops), salamander abundance ranges from 0.04 to 
1.08 individuals per m2 for varying VHSD values. The 
abundance model predicts a maximum of 12 salaman-
ders per m2 at site with high FA and low VHSD. These 
conditions are likely to occur at sites under dense, closed 
canopy cover near streams. However, when the abun-
dance and presence models are combined (Fig. 3b), it 
shows more realistic predictions with a maximum of 2.9  
salamanders per m2.

Results from running the predictive models of P. ken-
tucki abundance show a less clear best-fit model (Table 
4). However, the top-ranked model, which only contains 
CC as the abundance and presence variable, is about 48 
% more likely to perform better than other models. Mo-
reover, CC is also contained in six of the top seven mo-
dels. In the top-ranked model, the positive CC parameter 
estimate for abundance indicates a direct relationship and 

Table 2. Pearson’s correlation matrix for covariates used in model building for both 
salamander species

VH VHSD FA HS SMI

CC 0.892 0.099 -0.012 -0.061 0.067

VH 0.253 0.084 -0.047 0.106

VHSD 0.106 -0.274 0.264

FA -0.215 0.416

HS -0.812

CC = canopy cover, VH = vegetation height, VHSD = vegetation height standard 
deviation, FA = flow accumulation, HS = hillshade, SMI = soil moisture index
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the non-zero overlapping 95 % confidence interval also 
indicates it is an important variable for predicting abun-
dance (Table 5). On the other hand, the 95 % confidence 
internal of the parameter estimate for presence contains 
zero indicating that CC might not be important for pre-
dicting it. When the presence portion of the model is run 
for the range of possible CC values, abundance estima-
tes indicate no unoccupied site, which is why abundan-
ce estimates are lower than the other species. When the 
full model is run, abundance ranges from 0.04 to 0.70 
individuals per m2 with an average of 0.58 individuals  
per m2 (Fig. 4).

When comparing both salamander species, results 
show that different LiDAR-derived covariates have a sig-
nificant effect on their abundance. For example, VHSD is 
retained in several high-ranked models (AICc < 216) for 
P. glutinous abundance, while CC is retained in most low-
ranked models (AICc > 219) (Table 3). The opposite case 
can be observed for P. kentucki where CC and VHSD are 
retained in high-ranked (AICc < 279) and low-ranked mo-
dels (AICc > 279), respectively. When applying the top-
ranked abundance / presence model to map the abundance 
across the study area, it can be observed that P. glutinosus 
is predicted to be present in relatively high numbers near 
streams while not occupying ridgetops, which offers fur-
ther evidence of the effect of FA on abundance (Fig. 5). 
However, P. kentucki is predicted to be more abundant 
throughout except for roads surfaces and recently harves-
ted areas with low CC value, closely resembling the CC 
special distribution (Fig. 6).

Discussion
We demonstrate the utility of using LiDAR-derived 

terrain and vegetation information needed to estimate 
salamander presence and abundance. LiDAR-derived 
VHSD and FA, and CC were found to be the best pre-
dictors for P. glutinosus and P. kentucki abundances, res-
pectively. This is an important finding due to the need to 
accurately describe fine-scale habitat important for sa-
lamanders over large areas, which it would be difficult 
with traditional, courser remotely sensed data (Peterman 
& Semlitsch 2013). LiDAR data acquisition is becoming 
more affordable and datasets are becoming available at 
the regional scale. For example, LiDAR datasets are now 
available for large parts of the states of Kentucky, West 
Virginia, Virginia, North Carolina, and Tennessee, cove-
ring most of the Appalachian region where salamanders 
are an important part of the ecosystem functioning.

LiDAR point density has been shown to affect DEM 
accuracy (Balsa-Barreiro & Lerma, 2014; Hodgson & 
Bresnahan, 2004). However, the LiDAR data used in 
this study is a high-density dataset with 40 pts m-2 with 
enough points reaching the ground to create a DEM. A 
previous study (Contreras et al., 2017) quantified the 
DEM accuracy across the study area using our high-den-
sity (40 pts m-2) dataset collected during leaf-on season 
and a low-density (1.5 pts m-2) dataset collected during 
leaf-off. They found the mean elevation change error to 
vary from 23 cm to 146 cm based on terrain slope and ru-
ggedness, and most importantly they found no significant 

Table 3. Field data collection summary of the 45 transects grouped by canopy cover and soil moisture index category. First two le-
tters in the abbreviated plot categories indicates level of canopy cover (CH = canopy cover high level, CM = canopy cover medium 
level, CL = canopy cover low level) and the second two letters indicates level of soil moisture (MH = soil moisture high level, MM 
= soil moisture medium level, ML = soil moisture low level)

Category

Plethodon glutinosus Plethodon kentucki

Number of 
transects 
without  
presence

Number of individuals from transects 
with presence in any of the three visits

Number of 
transects 
without 
presence

Number of individuals from transects 
with presence in any of the three visits

Average Min Max Average Min Max

CLML 5 -- -- -- 4 0.67 0 2

CLMM 4 0.33 0 1 5 -- -- --

CLMH 1 0.92 0 2 0 0.40 0 2

CMML 4 0.33 0 1 2 0.67 0 3

CMMM 4 0.33 0 1 3 1.00 0 5

CMMH 4 0.33 0 1 4 1.33 1 2

CHML 4 0.67 0 1 3 3.17 0 12

CHMM 1 2.17 0 14 2 2.89 0 7

CHMH 0 0.80 0 4 0 0.93 0 4
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differences between datasets. Considering that available 
regional LiDAR datasets have point densities between 
1.5 and 40 pts m-2, similar DEM accuracies can be ex-
pected. In addition to point density, cell size can also 
affect DEM accuracies. However, resampling the ori-

ginal 0.6 m resolution of the LiDAR-derived layers, to 
the courser 30.5 m resolution, to match the size of field 
transects smoothed and averaged cell values and the as-
sociated error. Although out of the scope of this study, 
future study might focus on evaluating the accuracy of 

Table 4. Model ranking for showing covariates used, Akaike’s information criterion 
(AICc), evidence ratio (ER), and weighted AICc (W AICc)

Abundance/ presence covariates AICc ER W AICc

Plethodon glutinosus

VHSD, FA 199.778 1 0.9576

VHSD, HS, FA 206.310 26.2 0.0365

FA 211.273 313.4 0.0031

VHSD 214.319 1437.8 0.0007

CC, VH, HS 215.667 2820.0 0.0003

CC, VH, FA 215.784 2990.7 0.0003

VHSD, VH 216.133 3560.7 0.0003

VH 216.223 3723.9 0.0003

SMI 218.262 10325.8 9.3E-05

CC, HS, FA 219.559 19748.8 4.9E-05

HS, FA 220.661 34257.1 2.8E-05

CC, VH 220.901 38626.7 2.5E-05

HS 221.194 44721.1 2.1E-05

CC 221.962 65666.9 1.5E-05

CC, FA 225.150 323305.0 2.9E-06

CC, HS 226.127 526733.0 1.8E-06

Plethodon kentucki

CC 269.878 1 0.4765

CC, VH 270.510 1.4 0.3475

CC, VH, HS 272.885 4.5 0.1056

CC, HS 275.574 17.2 0.0276

VHSD 276.595 28.7 0.0166

CC, VH, FA 278.068 60.0 0.0079

CC, HS, FA 279.110 101.1 0.0047

VHSD, FA 279.236 107.6 0.0044

VH 279.272 109.6 0.0043

VHSD, VH 280.896 246.9 0.0019

SMI 282.007 430.1 0.0011

VHSD, HS, FA 282.021 433.3 0.0011

VHSD, HS, FA 285.795 2858.8 0.0001

FA 287.652 7234.4 6.5E-05

HS 289.901 22273.4 2.1E-05

HS, FA 294.277 198630.0 2.4E-06
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vegetation height and canopy cover as a function of point 
density and cell size across the study area as well as the  
Appalachian region.

Model development results indicate that both salaman-
der species have different habitat preferences. P. gluti-
nosus was predicted to be more abundant in sites under 
dense, close-canopy cover near streams. This corresponds 
with several other studies reporting preference for near 
humid sites (i.e., Marvin, 1996; Davidson, 1956; Grob-
man, 1944). P. kentucki was predicted to be found across 

the study sites except in sites with no vegetation. This also 
agrees with several studies mentioning rocky outcrops, 
downed logs, leaf litter and living roots systems as sui-
table habitat for this species, and which are found across 
the study area where canopy cover is high (Bowers, 2013; 
Pauly & Watson, 2005; Marvin, 1996). Abundance esti-
mates also similar to those reported by other studies. For 
example, Burton & Likens (1975a) reported salamander 
abundance about one third of our estimates (approxima-
tely 0.25 salamanders per m2 vs our combined average 

Table 5. Parameter estimates, standard error (SE), and 95% confidence interval (CI) for the top-ranked model for Pletho-
don glutinosus and Plethodon kentucki abundance

Covariate / intercept Estimate SE ±95% CI
Plethodon glutinosus

Abundance intercept 4.186 0.771 1.511

Vegetation height standard deviation -0.117 0.028 0.054

Flow accumulation 0.006 0.001 0.003

Presence intercept -19.720 9.132 17.899

Vegetation height standard deviation 0.831 0.413 0.809
Flow accumulation 0.026 0.015 0.029
Detection intercept 10.392 3.613 7.082
Julian date -0.090 0.026 0.051
Days since last precipitation squared -0.138 0.056 0.109
Plethodon kentucki
Abundance intercept 0.873 0.841 1.649

Canopy cover 2.886 0.820 1.607

Presence intercept 0.341 1.916 3.755

Canopy cover 0.530 2.277 4.462
Detection intercept 3.527 2.833 5.552
Julian date -0.044 0.020 0.039
Days since last precipitation squared -0.691 0.159 0.312

Figure 3. Relationship between predicted abundances of Plethodon glutinosus (individuals per m2, no m-2) and observead values of 
flow accumulation and vegetation height standard deviation (a), and predicted abundances given the presence as a function of the 
two predictors across the study area (b) 
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of 0.75 individuals per m2). However, our estimates are 
well within the 0.5-1.0 individual per m2 range reported 
by Semlitsch et al. (2014). This same study mentions 
reported abundance estimates of other small terrestrial 
Plethodontid salamanders varying from 0.23 to 0.53 from 
data based on surface activity counts.

The parsimonious nature of the developed models can 
facilitate its use as they include one or two LiDAR-de-
rived covariates. Predictor covariates are in line with 
known phenomena of desiccation effecting salamander 
activity and abundance (Peterman & Semlitsch, 2014). 
Although, forest age also affects salamander abundance 
and presence (Petranka, 1999), it is difficult to determine 

in eastern deciduous forests, but basal area or diameter 
at breast height could be used as surrogate. We did not 
include such covariates due to the difficulty of retrieving 
individual tree information from LiDAR data in closed 
canopy deciduous forests (Hamraz et al., 2016; Koch et 
al., 2006). 

Because we used canopy cover as a surrogate for 
desiccation, areas with low canopy cover should have 
been better represented in the random selection of tran-
sects. This was difficult to achieve because most of the 
study area is a considered second growth forest, with 
almost full canopy closure throughout which is mostly 
covered. Recently harvested areas were the only areas 
with medium and low canopy cover. Models for both spe-
cies contained some form of a vegetation variable pre-
dicting lower abundance in those areas, which is likely 
related to increased desiccation from more direct sunli-
ght via canopy openings. Alternative transect selection 
methods to select transect locations should be used to re-
duce the number of field observations with zero counts 
and thus improve model performance. The field data co-
llection could also be improved by increasing the sam-
ple size and limiting the data collection to days closer to 
rain events to ensure sampling during time periods with  
more surface activity.

We present the first attempt to quantify salamander 
abundance using LiDAR-derived fine-scale vegeta-
tion and terrain information in the deciduous forest of 
the Appalachian mountain region of eastern Kentucky. 

Figure 4. Predicted abundances (individuals per m2, no m-2) 
given the presense of Plethodon kentucki for possible canopy 
cover values.

Figure 5. (a) Topography for the study area (b) Predicted abundance of Plethodon glutinosus expressed as individuals per m2.
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Variation in vegetation height and flow accumulation 
were important predictors of P. glutinosus abundance, 
and LiDAR-derived canopy cover was the only impor-
tant predictor of P. kentucki abundance. Methods could 
be replicated by land and wildlife managers for different 
species of terrestrial plethodontid salamanders to iden-
tify vegetation and terrain characteristics affecting their 
distribution across the landscape and to model their re-
lative abundance. The presence and abundance models 
developed can reasonably predict salamander abundance 
providing estimates within the range of values reported 
by other studies. However, we recommend their use to 
estimate relative abundance, instead of estimating popu-
lation size or biomass. A straightforward application of 
these models is to map abundance across the landscape 
to help understand vegetation and terrain characteristics 
influencing salamander distribution and assist with futu-
re more rigorous sampling and management efforts.
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