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Airborne LiDAR point cloud representing a forest contains 3D data, from which vertical stand structure
even of understory layers can be derived. This paper presents a tree segmentation approach for multi-
story stands that stratifies the point cloud to canopy layers and segments individual tree crowns within
each layer using a digital surface model based tree segmentation method. The novelty of the approach is
the stratification procedure that separates the point cloud to an overstory and multiple understory tree
canopy layers by analyzing vertical distributions of LiDAR points within overlapping locales. The proce-
dure does not make a priori assumptions about the shape and size of the tree crowns and can, indepen-
dent of the tree segmentation method, be utilized to vertically stratify tree crowns of forest canopies. We
applied the proposed approach to the University of Kentucky Robinson Forest – a natural deciduous forest
with complex and highly variable terrain and vegetation structure. The segmentation results showed that
using the stratification procedure strongly improved detecting understory trees (from 46% to 68%) at the
cost of introducing a fair number of over-segmented understory trees (increased from 1% to 16%), while
barely affecting the overall segmentation quality of overstory trees. Results of vertical stratification of the
canopy showed that the point density of understory canopy layers were suboptimal for performing a rea-
sonable tree segmentation, suggesting that acquiring denser LiDAR point clouds would allow more
improvements in segmenting understory trees. As shown by inspecting correlations of the results with
forest structure, the segmentation approach is applicable to a variety of forest types.
� 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

In the past two decades, airborne light detection and ranging
(LiDAR) technology has extensively been used for forestry pur-
poses because of its ability to acquire data at unprecedented spa-
tial and temporal resolutions (Ackermann, 1999; Hyyppä et al.,
2012; Maltamo et al., 2014; Swatantran et al., 2016). This data is
typically captured in the shape of 3D point clouds and can be used
to retrieve more detailed tree level information, hence improving
the accuracy of forest assessment, monitoring, and management
activities (Duncanson et al., 2012; Vastaranta et al., 2011;
Weinacker et al., 2004; Wulder et al., 2012). Due to the ability to
penetrate vegetation canopy, LiDAR 3D point clouds also contain
vertical information from which vegetation structural information
can be retrieved (Hall et al., 2011; Lefsky et al., 2002; Maguya et al.,
2014; Reutebuch et al., 2005). This structural information may also
include understory layers, which is of great value for various for-
estry applications and ecological studies (Espírito-Santo et al.,
2014; Ishii et al., 2004; Singh et al., 2015; Wing et al., 2012).
Although understory trees provide limited financial value and form
a minor proportion of total above ground biomass, they influence
canopy succession and stand development, create a heterogeneous
and dynamic habitat for numerous wildlife species, and are an
essential component of forest ecosystems (Antos, 2009; Jules
et al., 2008; Moore et al., 2007). However, to obtain individual tree
attributes (e.g., location, crown width, height, DBH, volume, bio-
mass) from different canopy layers, accurate and automated tree
segmentation approaches that are able to separate tree crowns
both vertically and horizontally are required (Duncanson et al.,
2014; Ferraz et al., 2012; Shao and Reynolds, 2006; Wang et al.,
2008).

Numerous methods for individual tree segmentation within
LiDAR data have been developed. Earlier methods use pre-
processed data in the form of digital surface models (DSMs) or
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canopy height models to segment individual trees (Jing et al., 2012;
Koch et al., 2006; Kwak et al., 2007; Popescu and Wynne, 2004;
Véga and Durrieu, 2011). These methods have an inherent draw-
back of missing understory trees by considering only the surface
data (Hamraz et al., 2016; Wang et al., 2008). More recent methods
process the raw point clouds in order to utilize all horizontal and
vertical information and, from the computational viewpoint, can
be classified to volumetric or profiler methods. Volumetric meth-
ods directly search the 3D volume for the individual trees (Amiri
et al., 2016; Ferraz et al., 2012; Lahivaara et al., 2014; Li et al.,
2012; Lindberg et al., 2014; Lu et al., 2014; Rahman and Gorte,
2009; Sačkov et al., 2017; Véga et al., 2014). For example, Ferraz
et al. (2012) used the mean shift clustering to segment the point
cloud and assigned each segment to overstory, understory, or
ground vegetation layer. Véga et al. (2014) performed segmenta-
tions at different scales and used criteria based on the shape of
an ideal tree crown to dynamically select the best set of apices.
Sačkov et al. (2017) developed a moving window analysis method
to identify potential apices and used several tree allometry rules to
increase the likelihood of detecting the actual tree profiles.
However, volumetric methods are generally computationally
intensive and may be prone to suboptimal solutions due to the
large magnitude of the search space.

On the other hand, profiler methods reduce the computational
load through a modular process. They typically have a module for
vertical segmentation (i.e., to strip the 3D volume to multiple 2D
horizontal profiles), a module for horizontal segmentation (i.e., to
search the trees within the profiles), and a module to ultimately
aggregate the results across the profiles (Ayrey et al., 2017). How-
ever, these methods generally lose information about the vertical
crown geometry when processing a 2D profile. To minimize infor-
mation loss due to profiling, other profiler methods have analyzed
vertical distribution of LiDAR points to identify 2.5D profiles
embodying more information about vertical crown geometry.
Wang et al. (2008) searched trees within each profile and used
a top-down routine to unify any detected crowns that may be pre-
sent in different profiles. They analyzed vertical distribution of all
LiDAR points globally within a given area to determine the height
levels for stripping profiles. However, depending on the vegeta-
tion height variability, a globally derived height level may lead
to under/over-segmenting tree crowns across the profiles. Other
approaches addressed this issue by identifying constrained
regions including one or more trees using a preliminary segmen-
tation routine and independently 2.5D profiling each region
(Duncanson et al., 2014; Paris et al., 2016; Popescu and Zhao,
2008), yet the final result is dependent on the preliminary
segmentation.

Although a number of methods for segmenting individual trees
in multi-story stands have been proposed, they are still unable to
satisfactorily detect most of the understory trees. Typically, detec-
tion rate of dominant and co-dominant (overstory) trees is around
or above 90% and detection rate of intermediate and overtopped
(understory) trees is below 50%. This inefficacy can be attributed
to the reduced amount of LiDAR points penetrating below the main
cohort formed by overstory trees (Kükenbrink et al., 2016;
Takahashi et al., 2006), although incompetency of the current
approaches to effectively use all vertical and horizontal informa-
tion also plays a role. In this paper, we present a profiler approach
for segmenting crowns of all size trees in multi-story stands. The
approach derives height levels locally hence stratifies the point
cloud to 2.5D profiles (hereafter referred to as canopy layers).
Each canopy layer is sensitive to stand height variability and
includes a layer of non-overtopping tree crowns within an uncon-
strained area. The approach utilizes a DSM-based method as a
building block to segment individual tree crowns within each
canopy layer.
2. Materials and methods

2.1. Study site and LiDAR campaign

The study site is the University of Kentucky’s Robinson Forest
(RF, Lat. 37.4611, Long. -83.1555) located in the rugged eastern
section of the Cumberland Plateau region of southeastern Kentucky
in Breathitt, Perry, and Knott counties (see the supplementary
interactive map). RF features a variable dissected topography
(Carpenter and Rumsey, 1976), with moderately steep slopes rang-
ing from 10 to over 100% facing predominately northwest to south-
east, with elevations ranging from 252 to 503 m above sea level.
Vegetation is composed of a diverse contiguous mixed mesophytic
forest made up of approximately 80 tree species with northern red
oak (Quercus rubra), white oak (Quercus alba), yellow-poplar (Lirio-
dendron tulipifera), American beech (Fagus grandifolia), eastern
hemlock (Tsuga canadensis) and sugar maple (Acer saccharum) as
overstory species. Understory species include eastern redbud
(Cercis canadensis), flowering dogwood (Cornus florida), spicebush
(Lindera benzoin), pawpaw (Asimina triloba), umbrella magnolia
(Magnolia tripetala), and bigleaf magnolia (Magnolia macrophylla)
(Carpenter and Rumsey, 1976; Overstreet, 1984). Average canopy
cover across RF is about 93% with small opening scattered through-
out. Most areas exceed 97% canopy cover and recently harvested
areas have an average cover as low as 63%. After being extensively
logged in the 1920’s, RF is considered second growth forest ranging
from 80 to 100 years old, and is now protected from commercial
logging and mining activities (Department of Forestry, 2007). RF
currently covers an aggregate area of �7440 ha, and includes about
2.5 million (±13.5%) trees, over 60% of which are understory trees
(Hamraz et al., 2016, 2017b).

The LiDAR acquisition campaign over RF was performed in the
summer of 2013 during leaf-on season (May 28–30) using a Leica
ALS60 sensor, which was set at 40� field of view and 200 kHz pulse
repetition rate. The sensor was flown at the average altitude of
214 m above ground at the speed of 105 knots with 50% swath
overlap. Up to 4 returns were captured per pulse. Using the 95%
middle portion of each swath, the resulting LiDAR dataset given
the swath overlap has an average density of 50 pt/m2. The provider
processed the raw LiDAR dataset using the TerraScan software
(Terrasolid Ltd, 2012) to classify LiDAR points into ground and
non-ground points. Ground points were then used to create a
1-meter resolution digital elevation model (DEM) using the natural
neighbor as the fill void method and the average as the interpola-
tion method.
2.2. Tree segmentation approach for multi-layered stands

Using the DEM, normalized heights of the LiDAR points are ini-
tially calculated and ground points are removed from further pro-
cessing. The approach consists of a vertical stratification procedure
and a tree segmentation method. The procedure stratifies the top
canopy layer of the point cloud by analyzing the vertical distribu-
tions of the LiDAR points within overlapping locales and removes
the layer from the point cloud. Iterative application of the stratifi-
cation procedure yields multiple canopy layers. Each canopy layer
is independently segmented using a surface-based method. Fig. 1
visualizes the tree segmentation approach.
2.2.1. Vertical stratification
To stratify the top canopy layer, the point cloud is binned into a

horizontal grid with a cell width equal to the average footprint
(AFP). AFP equals the reciprocal of square root of point density,
which itself is defined as the number of points divided by the hor-
izontal area covered by the point cloud (as layers are removed from



Fig. 2. Height histogram of LiDAR points within a locale including over 100 points
used for determining the height threshold for removing the top canopy layer in a
cell location.

Fig. 1. Illustration of the tree segmentation process in a multi-story stand by stratifying one canopy layer at a time, removing it from the point cloud, and segmenting crowns
within each layer. (In the illustration, a number of understory trees seem to be missed within the third canopy layer, which is likely due to the much lower point density
compared to the first and second layers).
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the point cloud, point density decreases and AFP increases). The
height threshold for removing the top layer is determined indepen-
dently per each grid cell by inspecting the height histogram of all
points in a circular locale around the cell. The locale should include
sufficient number of points for building an empirical multi-modal
distribution but not extending very far to preserve locality. We
fixed the radius of the locale to 6 � AFP (essentially containing
about p � 62 points) and lower bounded it at 1.5 m to prohibit
too small locales capturing insufficient spatial structure.

To process a locale, we create a height histogram (bins fixed at
25 cm) of the points in the locale and smooth the histogram to
remove variabilities pertaining to vertical structure of a single
crown. We used a Gaussian filter with a standard deviation fixed
at 5 m for smoothing. Every salient curve in the smoothed his-
togram, corresponding to a sequence of histogram bins throughout
which the second derivative is negative, represents a canopy layer
(Popescu and Zhao, 2008; Wang et al., 2008). We choose the mid-
point of the gap between the top layer and the second top layer as
the height threshold for removing the top canopy layer within the
cell location (Fig. 2).

2.2.2. Segmentation of stratified canopy layer
We utilized the DSM-based method introduced by Hamraz et al.

(2016) to segment individual trees within a canopy layer. The
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segmentation method does not make a priori assumptions about
the tree crown shape and size nor spacing between the crowns.
It captures this information on-the-fly and adapts the segmenta-
tion operation accordingly in order to robustly segment trees in
complex stands. The method removes all tree crowns that have
an average width of less than 1.5 m or are entirely located below
4 m from the ground (likely ground level vegetation) as noise.
The modular design of the approach clearly enables utilizing other
segmentation methods as well in case a more customized forest-
type specific operation is required.

The height thresholds for removing the top canopy layer are
determined using overlapping locales without a priori assumptions
about tree crown shape or size. Hence, the canopy layer smoothly
adjusts to incorporate vertical variabilities of crowns within an
unconstrained area to minimize under/over-segmenting tree
crowns (Fig. 1), which is the major novelty of the proposed
approach. Because the segmentation method also does not make
a priori assumptions about the stand structure, the combination
is a robust tree segmentation approach for a multi-layered stand
that can be applied to different forest types.

2.3. Approach evaluation

2.3.1. Field data
Throughout the entire RF, 270 regularly distributed (grid-wise

every 384 m) circular plots of 0.04 ha in size, centers of which were
georeferenced with 5 m accuracy, were field surveyed during the
summer of 2013 (see the supplementary interactive map). Within
each plot, DBH (cm), tree height (m), species, crown class (domi-
nant, co-dominant, intermediate, overtopped), tree status (live,
dead), and stem class (single, multiple) were recorded for all trees
with DBH > 12.5 cm. In addition, horizontal distance and azimuth
from plot center to the face of each tree at breast height were col-
lected to create a stem map. Site variables including slope, aspect,
and slope position were also recorded for each plot. Average height
of overstory trees was 25.5 m with a standard deviation of 5.3 m
and average height of understory trees was 17.2 m with a standard
deviation of 4.3 m. Table 1 shows a plot level summary.

2.3.2. Evaluation method
LiDAR point clouds over each of the 270 field-surveyed plots

included a 4.7-m buffer for capturing complete crowns of border
trees using the proposed tree segmentation approach. The evalua-
tion method assigns a score to each pair of LiDAR-derived tree loca-
tion, assumed to be the apex of the segmented crown, and stem
Table 1
Summary of plot level data collected from the 270 plots in Robinson Forest.

Plot-Level Metric Min

Slope (%) 0
Aspect � 2

Tree count 2
Dominant 0
Co-dominant 0
Intermediate 0
Overtopped 0
Dead 0

Mean tree height (m) 13.9
Dominant (m) 15.6
Co-dominant (m) 10.6
Intermediate (m) 11.2
Overtopped (m) 7.1
Dead (m) 0.0

Standard deviation of tree heights (m) 1.2
Species count 1
Shannon diversity index 0.0
location measured in the field according to the tree height differ-
ence (should be less than 30%) and the leaning angle (should be
less than 15� from nadir) between the crown apex and the stem
location. The method selects the set of pairs with the maximum
total score where each crown or stem location appears not more
than once using the Hungarian assignment algorithm and regards
the set as the matched trees (Hamraz et al., 2016; Kuhn, 1955).
The number of matched trees (MT) is an indication of the tree seg-
mentation quality. The number of unmatched stem map locations
(omission errors – OE) and unmatched LiDAR-derived crown
apexes that are not in the buffer area (commission errors – CE)
indicate under- and over-segmentation, respectively. The accuracy
of the approach is calculated in terms of recall (Re – measure of
tree detection rate), precision (Pr – measure of correctness of
detected trees), and F-score (F – combined measure) using the fol-
lowing equations (Manning et al., 2008):

Re ¼ MT
MT þ OE

ð1Þ

Pr ¼ MT
MT þ CE

ð2Þ

F ¼ 2� Re� Pr
Reþ Pr

ð3Þ

We evaluated the accuracy of the approach with and without
canopy stratification (equivalent to the bare DSM-based method
used in the approach) to assess the utility of the canopy stratifica-
tion procedure. We conducted two-tailed paired T-tests to
compare the DSM-based and the stratification-enabled approach
over nine accuracy metrics, i.e., precision, recall, and F-score for
overstory, understory, and all trees. Our sample of 270 plots is
large enough to satisfy the assumptions of the T-test even if the
data is not normally distributed. We also inspected the Pearson
correlations of the accuracy metrics for the stratification-enabled
approach with different plot level parameters. These correlation
relations help investigate how the performance of the approach
is affected according to the terrain and stand variability across RF.
3. Results

3.1. Vertical stratification

The stratification procedure identified three (68.2%) or four
(24.1%) canopy layers for most of the 270 plots with an expected
Max Avg. Total Percent of total

93 50
360 179

41 14.7 3971
3 0.5 130 3.3
10 3.5 954 24.0
34 5.5 1481 37.3
19 4.3 1152 29.0
7 0.9 254 6.4

28.8 19.5
40.8 27.8
37.8 25.0
32.0 19.9
24.8 15.8
26.3 9.5

12.4 5.5
12 6.0 43
2.25 1.50



Fig. 3. Thickness of canopy layer according to starting height of the layer.
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number of canopy layers of 3.16. Any layer located below 4 m for
its entirety was excluded because it likely represents ground level
vegetation, though any of the remaining layers may extend below
4 m and even touch the ground. Starting height and thickness of a
canopy layer are defined as the median over all grid cells used to
stratify the layer (Fig. 2). The average starting height of a canopy
layer ranged from 0.3 to 18.2 m and the average thickness of a
layer ranged between 6.1 and 8.8 m. Also, the average point den-
sity of a layer ranged between 0.44 and 42.08 pt/m2. The average
starting height, thickness, and point density of the entire canopy
(all layers aggregated) were 1.4 m, 24.8 m, and 47.45 pt/m2,
respectively. The average point density of the entire canopy agrees
with the average point density of the initial LiDAR dataset of
50 pt/m2 given that ground and ground level vegetation returns
were removed.

Thickness of a canopy layer seemed to be unrelated to its start-
ing height except only for very low starting heights (Fig. 3), which
is likely associated with layers formed by very small trees. Depen-
dence of a canopy layer thickness on the number of layers preced-
ing it and its independence to height is likely due to the fact that
tree crowns within a canopy layer adapt their shape to maximize
light exposure (Duursma and Mäkelä, 2007; OSADA and TAKEDA,
2003), and light exposure is related to the amount of light already
intercepted by preceding canopy layers rather than the height of
the layer.
Fig. 4. Average segmentation accuracies over 270 sample plots grouped by crown
class.
3.2. Tree segmentation accuracy

On average for the 270 sample plots, results from the DSM-
based tree segmentation show higher precisions by 5–15% while
the stratification-enabled approach shows higher recalls by
5–22% and higher F-scores by up to 12% (Fig. 4). When comparing
the stratification-enabled against the DSM-based approach using
T-tests (Table 3), all metrics except F-score for overstory trees
showed significant (P < 0.0001) changes. Recall and precision for
understory trees showed the largest changes: an increase from
46% to 68% (MSE = 10.04) and a decrease from 99% to 84%
(MSE = 3.97), respectively. Overall, the stratification-enabled tree
segmentation approach shows improvements in F-scores for
understory (from 61% to 73%, MSE = 1.70) as well as all trees (from
70% to 77%, MSE = 0.66), while barely affecting F-score for over-
story trees compared with the DSM-based approach (Fig. 4).

We inspected the correlations of terrain slope and aspect, stem
density, Shannon diversity index of tree species, average and stan-
dard deviation of tree heights, average height difference of over-
story and understory trees, and ratio of the number of overstory
to understory trees in a plot with recalls and precisions of the
stratification-enabled approach. We observed a significant but
weak negative correlation between plot slope and recall of under-
story trees (P = 0.006, r = �0.17). This correlation indicates that
detection of understory trees in sloped terrain is slightly more dif-
ficult. Furthermore, significant weak correlations was observed
between stem density and recall (P = 0.0006, r = �0.21), precision
(P = 0.009, r = +0.16) of understory trees as well as precision
(P = 0.009, r = +0.16) of overstory trees. Average tree height in a
plot showed significant weak correlations with recall (P < 0.0001,
r = +0.25) and precision (P = 0.007, r = �0.17) of understory trees
as well as recall (P = 0.0001, r = +0.23) of overstory trees. These
observations indicate trees in denser stands and/or smaller trees
are harder to detect while the detected trees are slightly less prone
to over-segmentation. Standard deviation of tree heights also had
significant weak negative correlations with precision of understory
(P = 0.0007, r = �0.21) and overstory (P = 0.009, r = �0.16) trees.



390 H. Hamraz et al. / ISPRS Journal of Photogrammetry and Remote Sensing 130 (2017) 385–392
This observation indicates that large variability in tree heights
slightly degrades segmentation quality, which is likely associated
with the performance of the stratification procedure. Average
height difference of overstory and understory trees also had signif-
icant weak negative correlations with recall of understory trees
(P = 0.002, r = �0.19) and precision of overstory trees (P = 0.004,
r = �0.18). This reaffirms the fact that smaller (understory) trees
are harder to detect and larger (overstory) trees are more prone
to over-segmentation while it also indicates the robustness of the
stratification procedure because the tighter gap between overstory
and understory seemed not to degrade performance metrics.
Lastly, the ratio of overstory to understory trees showed a rela-
tively stronger negative correlation with precision of understory
trees (P < 0.0001, r = �0.35). A larger number of overstory trees
means more occlusion for understory trees resulting in lower point
density and potentially less homogeneity in point distribution of
understory canopy layers, making understory trees more prone
to over-segmentation. This observation is mainly associated with
the low point density of understory canopy layers rather than
the segmentation approach.

4. Discussions

Although the stratification procedure is in theory robust and
applicable to a variety of stand structures, it increased the number
of over-segmentations by a fair amount (5–15%) depending on the
crown class in our study. Inspecting Fig. 2, vertical over-
segmentation is likely when the smoothing operation cannot
remove the vertical variability pertaining to a single crown. We
tried to alleviate this problem by adaptively adjusting the size of
the smoothing window according to vegetation height so as to
reach a more favorable trade-off between under- and over-
segmentations, yet our attempt did not make improvements. We
also tried a post-processing module to merge the likely over-
segmentations back to the crown they belong to, but this attempt
also resulted in no improvements. We speculate adjusting the win-
dow size based on the field observations of a forested area in ques-
tion is the best path to follow to tackle this problem.

Overall, the stratification procedure improved tree segmenta-
tion accuracy as benchmarked against a recently developed
Table 2
Summary statistics of the canopy layers stratified within the 270 sample plots.

Canopy Layer Plotsa Starting Height (m)

Avg. S.D.

1 0.00% 18.16 4.53
2 7.78% 4.23 2.58
3 68.15% 0.47 1.03
4 24.07% 0.34 1.39
Aggregate 100.00% 1.38 1.41

a Plots having as many number of canopy layers.

Table 3
Summary of two-tailed paired T-tests assessing the improvement of canopy stratification

Tree Class Accuracy Metric Samples Used MSE

Overstory Re 269 0.43
Pr 269 0.72
F 268 0.00

Understory Re 267 10.0
Pr 265 3.96
F 261 1.69

All Re 270 5.44
Pr 270 1.74
F 269 0.65
DSM-based segmentation method (Fig. 4, Hamraz et al., 2016).
However, this overall improvement is majorly composed of a
strong increase in detection rate and a moderate decrease in cor-
rectness of the detected understory trees. Detecting more trees
likely increased the chance of over-segmentation of the detected
trees, and this was strongly pronounced for understory trees com-
pared with overstory trees. This observation indicates an increased
sensitivity of the stratification-enabled approach to segment
understory trees while barely affecting the segmentation of over-
story trees compared with the DSM-based method, which is also
an indication of the sound operation of the stratification procedure.
Correlations of the accuracy metrics with plot level metrics over a
forest with a complex and highly variable structure were
insignificant and/or weak. This observation evidences that the
stratification-enabled approach can also be used for multi-
layered tree segmentation of different forest types.

To understand the vertical structure of tree canopy layers of
forested landscapes (Leiterer et al., 2015; Whitehurst et al.,
2013), the proposed stratification procedure can be applied inde-
pendent of the tree segmentation method. As observed, average
thickness and point density decreases with lower canopy layers
(Table 2). Specifically, the third and fourth canopy layers, where
a large number of understory trees are found, have an average den-
sity lower than 1 pt/m2 (Table 2). Such low density is below the
optimal point density (�4 pt/m2) for segmenting individual trees
(Evans et al., 2009; Jakubowski et al., 2013; Wallace et al., 2014),
which is the main reason for inferior tree segmentation accuracy
of understory trees compared with overstory trees. Moreover,
lower canopy layers are more tightly placed compared with higher
canopy layers as also shown by Whitehurst et al. (2013), which
might have made stratification of the layers more challenging
and increased the chances of under/over-segmentation of small
understory trees.

As reported by Kükenbrink et al. (2016), at least 25% of canopy
volume remain uncovered even in small-footprint airborne LiDAR
acquisition campaigns, which concurs with suboptimal point
density of lower canopy layers for tree segmentation in our study.
If, however, our initial point cloud was a few times denser, the two
lower canopy layers might have neared the optimal density,
likely boosting segmentation accuracy of understory trees. In a
Thickness (m) Point Density (pt/m2)

Avg. S.D. Avg. S.D.

8.18 0.38 42.08 17.42
8.76 0.99 5.02 3.23
6.44 1.35 0.84 0.79
6.14 1.82 0.44 0.80
24.85 4.26 47.45 20.13

for tree segmentation.

T-Score P-Value Average Improvement

8 45.67 <0.0001 +4.68%
6 32.95 <0.0001 �4.58%
5 0.40 0.53 �0.64%

35 454.17 <0.0001 +22.10%
9 233.19 <0.0001 �15.05%
8 90.73 <0.0001 +11.52%

0 473.70 <0.0001 +16.56%
4 175.00 <0.0001 �8.98%
5 76.39 <0.0001 +6.98%
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concurrent study, we modeled how point density of lower canopy
layers decreases and estimated that a point cloud density of about
170 pt/m2 is required to segment understory trees within as deep
as the third canopy layer with accuracies similar to overstory trees
(Hamraz et al., 2017a). Such dense LiDAR campaigns are slowly
becoming more affordable given the advancements of the sensor
technology and platforms as exemplified by recent emergence of
single photon LiDAR technology providing 10x efficiency boost
(Swatantran et al., 2016; Wallace, 2017).

Lastly, a few similar studies processed raw LiDAR point clouds
and reported accuracy metrics for segmentation of understory
trees. In a Norway spruce dominated forest, Solberg et al. (2006)
detected 66% of the trees (dominant 93%, co-dominant 63%, inter-
mediate 38%, and overtopped 19%) with a commission error of 26%.
Paris et al. (2016) detected more than 90% of overstory and about
77% of understory trees with a commission rate of 7% in conifer
sites located in the Southern Italian Alps. However, due to tree
crown architecture, segmenting trees in conifer stands is relatively
simpler and studies have showed better performance compared to
deciduous or mixed stands (Hu et al., 2014; Vauhkonen et al.,
2011). In a deciduous stand at Smithsonian Environmental
Research Center, Maryland, Duncanson et al. (2014) detected 70%
of dominant (0% commissions), 58% of co-dominant (45% commis-
sions), 35% of intermediate (166% commissions), and 21% of over-
topped (29% commissions) trees. Ferraz et al. (2012) detected
99.3% of dominant, 92.6% of co-dominant, 65.7% of intermediate,
and 14.5% of overtopped Eucalyptus trees in a Portuguese forest
with an overall commission rate of 9.2%. In another deciduous
stand in Eastern France, Véga et al. (2014) detected 100% and
44% of overstory and understory trees with 27% and 3% commis-
sions, respectively. The detection rate of our stratification-
enabled tree segmentation approach was 95% for overstory trees
and 68% for understory trees with commission rates of �17% in a
deciduous forest. These results show improvements, especially in
segmenting understory trees, bearing the caveat that aforemen-
tioned studies were conducted in different sites using different
LiDAR acquisition parameters with slightly different field survey-
ing protocols and evaluation methods.
5. Conclusions

Small-footprint LiDAR data covering forested areas contain a
wealth of information of both horizontal and vertical vegetation
structure that can be utilized to enhance various forestry applica-
tions and ecological studies. In this paper, we presented a profiler
approach that stratified the raw point cloud extended over an
unconstrained area to its tree canopy layers without making a pri-
ori assumptions about tree shape and size, and utilized a DSM-
based tree crown segmentation method as a building block for
each layer to segment all sized trees in a multi-story deciduous
stand. The proposed canopy stratification procedure can also be
applied independent of the crown segmentation method in order
to vertically stratify canopy to flexible layers of tree crowns over
unconstrained areas. Statistical analyses showed overall improve-
ments in segmentation accuracy of understory trees without any
noticeable change in the accuracy of overstory trees, which was
the main objective of using canopy stratification as a module for
tree segmentation. As evidenced by inspecting correlations of
accuracy with plot level metrics, the approach can be applied to
segment trees within different forest types.

The modular process of our segmentation approach allowed us
to study individual canopy layers. We observed that the point den-
sities of the lower canopy layers were suboptimal for segmentation
of individual understory trees. It is expected that acquiring denser
LiDAR point clouds brings the point density of lower canopy layers
closer to optimal value, likely resulting in additional improvements
in the segmentation of understory trees. The result presented indi-
cates this work is a promising step forward toward correctly
retrieving and modeling all individual (overstory and understory)
trees of a natural forest using small-footprint LiDAR data.
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