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A B S T R A C T

This paper presents a distributed approach that scales up to segment tree crowns within a LiDAR point cloud
representing an arbitrarily large forested area. The approach uses a single-processor tree segmentation
algorithm as a building block in order to process the data delivered in the shape of tiles in parallel. The
distributed processing is performed in a master-slave manner, in which the master maintains the global map of
the tiles and coordinates the slaves that segment tree crowns within and across the boundaries of the tiles. A
minimal bias was introduced to the number of detected trees because of trees lying across the tile boundaries,
which was quantified and adjusted for. Theoretical and experimental analyses of the runtime of the approach
revealed a near linear speedup. The estimated number of trees categorized by crown class and the associated
error margins as well as the height distribution of the detected trees aligned well with field estimations, verifying
that the distributed approach works correctly. The approach enables providing information of individual tree
locations and point cloud segments for a forest-level area in a timely manner, which can be used to create
detailed remotely sensed forest inventories. Although the approach was presented for tree segmentation within
LiDAR point clouds, the idea can also be generalized to scale up processing other big spatial datasets.

1. Introduction

Individual tree information is increasingly becoming the preferred
data precision level to accurately and efficiently monitor, assess, and
manage forest and natural resources (Chen et al., 2006; Koch et al.,
2006; Schardt et al., 2002). In the last two decades, airborne light
detection and ranging (LiDAR) technology has brought drastic changes
to forest data acquisition and management by providing inventory data
at unprecedented spatial and temporal resolutions (Ackermann, 1999;
Maltamo et al., 2014; Shao and Reynolds, 2006; Swatantran et al.,
2016; Wehr and Lohr, 1999). However, to obtain accurate tree level
attributes such as crown width and tree height as well as derivative
estimates such as diameter at breast height (DBH), volume, and
biomass, accurate and automated tree segmentation approaches are
required (Schardt et al., 2002).

Numerous methods for tree segmentation within LiDAR data have
been proposed (Duncanson et al., 2014; Hamraz et al., 2016; Hu et al.,
2014; Jing et al., 2012; Li et al., 2012; Persson et al., 2002; Popescu
and Wynne, 2004; Véga and Durrieu, 2011; Véga et al., 2014; Wang
et al., 2008). Nevertheless, these methods have only been experimented
for small forested areas and none of them have thoroughly considered

scalability; LiDAR data covering an entire forest is much more
voluminous than the memory of a typical workstation and may also
take an unacceptably long time to be sequentially processed. Also,
given the continuous advancements of the sensor technology
(Swatantran et al., 2016), the LiDAR point clouds will be acquired
with less costs and greater resolutions, which in turn increases the need
for more efficient and scalable processing schemes.

A few studies have considered processing LiDAR data (Thiemann
et al., 2013; Zhou and Neumann, 2009) using streaming algorithms
(Pajarola, 2005), where the spatial locality of the LiDAR data is used to
construct out-of-core algorithms. However, streaming algorithms are
unable to reduce the time required for processing because of their
inherently sequential processing scheme. A number of recent studies
have considered leveraging the power of multicore and/or GPU (shared
memory) platforms for processing LiDAR data for efficient DEM
modeling (Guan and Wu, 2010; Oryspayev et al., 2012; Sten et al.,
2016; Wu et al., 2011), or for 3D visualization (Bernardin et al., 2011;
Li et al., 2013; Mateo Lázaro et al., 2014), although shared-memory
platforms are also bounded in the amount of memory and the number
of processing units.

On the other hand, processing geospatial data such as LiDAR data
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can be parallelized by partitioning the data into tiles (commonly used
for data delivery purposes) and distributing the tiles to different
processors on a distributed architecture. Huang et al. (2011) proposed
a master-slave distributed method for parallelizing inverse distance
weighting interpolation algorithm. Guan et al. (2013) designed a cloud
-based process virtualization platform to process vast quantities of
LiDAR data. Barnes (2016) parallelized Priority-Flood depression-
filling algorithm by subdividing a DEM into tiles. However, the above
distributed approaches were designed and used for perfectly parallel
problems while, in case of non-perfectly parallel problems, dealing with
the data near the boundaries of the tiles is not trivial and should be
elaborated according to the specifics of the application (Werder and
Krüger, 2009).

Accounting for the data near the tile boundaries, a distributed
density-based clustering for spatial data (Ester et al., 1996) was
presented by Xu et al. (2002). The authors proposed a master-slave
scheme in which the master spawns a number of slaves to perform the
clustering and return the result back to the master, who then combines
the results. The scheme relies on a data placement strategy for load
balancing in which the master partitions the data and distributes the
portions among the slaves for processing, hence the runtime is
determined by the last slave that finishes its job. Distributing the data
and merging the results by the master are also sequential procedures
and may yield performance bottlenecks. A more recent work (He et al.,
2011) has presented a version of the density-based clustering tailored
to run on a MapReduce infrastructure (Dean and Ghemawat, 2008)
performing four stages of MapReduce for indexing, clustering, as well
as identifying and merging boundary data. The MapReduce infrastruc-
ture, although constraining the programming model, has the advantage
of built-in simplicity, scalability, and fault tolerance. Thiemann et al.
(2013) have presented a framework for distributed processing of
geospatial data, where partitioning the data to tiles with overlapping
areas near the borders is their core solution. The overlapping area
should be at least as big as the required neighborhood for processing a
local entity and the produced overlapping result may require special
treatment to be unified. The authors used the map phase of the Hadoop
MapReduce infrastructure (White, 2012) for clustering buildings of
large urban areas and the overlapping result was unified separately
afterwards.

Although there are various methods proposed for tree segmenta-
tion, only few studies have considered scalable processing of large
geospatial data – there is specifically no study considering forest-level
datasets. This is increasingly important when obtaining tree-level
information for areas other than small-scale plots, which is often the
case when obtaining LiDAR data. This paper presents and analyzes a
distributed approach that accounts for the data near the tile boundaries
and uses a tree segmentation algorithm as a building block in order to
efficiently segment trees from LiDAR point clouds representing an
entire forest. For experimentation, the approach was implemented
using message passing interface (MPI) (Walker, 1994).

2. Materials and methods

2.1. LiDAR data

We used LiDAR data acquired over the University of Kentucky
Robinson Forest (Lat. 37.4611, Long. −83.1555), which covers an
aggregated area of 7441.5 ha in the rugged eastern section of the
Cumberland Plateau region of southeastern Kentucky in Breathitt,
Perry, and Knott counties (37°28′23″N 83°08′36″W) (Overstreet,
1984). The LiDAR data is a combination of two datasets collected with
the same LiDAR system (Leica ALS60 at 200 kHz flown with an
average speed of 105 knots) by the same vendor. One dataset was
low density (~1.5 pt/m2) collected in the spring of 2013 during leaf-off
season (average altitude of 3096 m above the ground). The second
dataset was high density (~25 pt/m2) collected in the summer of 2013

during leaf-on season (average altitude of 196 m above the ground).
The combined dataset has a nominal pulse spacing (NPS) of 0.2 m and
was delivered in 801 square (304.8 m side ~ 9.3 ha area) tiles (Fig. 1),
each containing about 5 million LiDAR points on average and occupy-
ing about 400 MB of disk space. The entire LiDAR dataset contains
over 4 billion points and occupies 320 GB of disk space.

2.2. Distributed processing

In a distributed processing environment, the LiDAR data repre-
senting tree crowns located across tile boundaries is split into two or
more pieces that are processed by different processing units.
Identifying such crown pieces, unifying them, and efficiently managing
the distributed resources to run with a reasonable speedup are the
main challenges of a distributed approach. We propose a master-slave

0 1
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Fig. 1. LiDAR tile map of Robinson Forest consisting of 801 9.3-ha tiles.

Fig. 2. A schematic of a tile with the two types of boundary data. The solid-colored tree
crown pieces inside the tile should be unified with the corresponding stripe-colored parts
outside.
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distributed approach, where the master is in charge of maintaining the
global tile map and coordinating how to process individual tiles and
their boundary data while the slaves perform the actual tree segmenta-
tion.

Tile boundary data (solid/striped colored regions in Fig. 2) likely
represent tree crowns located between two tiles (light-colored) –
hereafter referred to as edge data – or among three or four tiles
(dark-colored) – hereafter referred to as corner data. After segmenting
a tile, all segmented crowns that have at least one LiDAR point within a
horizontal distance of 2×NPS from a tile edge form part of the
boundary data. The crowns that are adjacent to only one edge (solid
light colored) are regarded as a part of the associated edge data and
those that are adjacent to exactly two edges (solid dark colored) are
regarded as a part of the associated corner data.

Figs. 3 and 4 show the flowcharts of the master and the slave
processes. It is assumed that all processes can independently input tiles
data and output results. Such an assumption can reasonably be fulfilled
by using a supercomputing infrastructure with a unified file system
(typically designed to efficiently support all existent physical processing
cores), by maintaining the tiles and the results on a scalable distributed
file system such as the Hadoop file system (White, 2012), or by using a
specialized distributed spatial data organization/retrieval system (Aji

et al., 2013; Hongchao and Wang, 2011). The master initializes the
work by loading the tile map and assigning each slave to process a
unique tile via a process tile (PT) message carrying the associated tile
ID. Upon receiving a PT message, a slave loads and segments the tile
and identifies the boundary data inside the tile consisting of eight
disjoint sets (four edges and four corners). The slave outputs the
segmented non-boundary trees, notifies the master via a tile complete
(TC) message carrying the boundary sets, and waits for the master for a
new assignment. The master then updates the tile map and inspects all
of the eight boundary sets it received from the slave to determine if any
of the associated edge/corner data is ready to be unified. Edge data is
ready when both tiles sharing the edge are segmented and corner data
is ready when all four tiles sharing the corner are segmented. The
master then unifies all edge/corner data that are ready and re-assigns
the waiting slave to re-segment the unified boundary data, which is
conveyed by a process boundary (PB) message to the slave. The slave
process, upon receiving the PB message, segments the boundary data
conveyed by the message, outputs the result trees, and notifies the
master via a boundary complete (BC) message. The master then re-
assigns a new tile (chosen on an arbitrary order) via a PT message to
the slave. If the master cannot locate any ready boundary data of the
tile when it receives the TC message, it proceeds with re-assigning the

Fig. 3. Flowchart of the master responsible for maintaining the tile map globally and coordinating the slaves.
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waiting slave to segment a new tile via a PT message. If all tiles are
segmented, the master terminates the slave process by sending a
finalize (FIN) message. The master process continues until all slaves
are finalized, implying that all tiles and their boundary data were
processed.

In the presented distributed approach, all tile boundaries are
guaranteed to be processed; once all tiles sharing each specific edge
or corner are segmented, the edge/corner data is assigned to be
processed by the slave that completed the last tile. Also, assuming that
the amount of processing incurred by the master does not affect its
responsiveness (theoretical limits are derived in the next section), the
slaves keep working all the time resulting in an efficient distributed
processing scheme.

2.3. Theoretical analysis

We assume that the entire LiDAR data consists of N points, which is
arranged in tiles of n points on average, and LiDAR data representing
each tree consist of t points (n ≫ t). We assume that the single-
processor tile segmentation algorithm has an asymptotic runtime
complexity of Ts(n). To illustrate, we assume that p processors can
be allocated for processing N/n tiles (N/n > p).

The number of trees within a tile is proportional to the area of the
tile while the number of trees along a tile edge is proportional to the
edge length. Hence, given the average number of trees within a tile is n/
t, the number of trees along one edge of the tile is the square root of it
(n1/2/t1/2). Multiplying the number of trees along the edge by t
results in t1/2.n1/2 LiDAR points per edge data. Therefore, the
asymptotic runtime of re-segmenting the boundary data of a tile is
Ts(n

1/2.t1/2). Also, the communication of the boundary data between

the master and a slave takes O(n1/2.t1/2). Each slave also needs to
wait for the master to receive its boundary data, update its internal tile
map, and re-assign the slave. Assuming the responsiveness of the
master, this wait time is also bounded by O(n1/2.t1/2) because the
master processes all of the LiDAR points it communicates with the
slave. Aggregating the required time for re-segmenting, communicating
data, and waiting for the master, the overhead for processing the
boundary data is Ts(n

1/2.t1/2) + O(n1/2.t1/2). Therefore, the effi-
ciency of a single slave when segmenting a tile in the distributed
approach presented above is given by:

Fig. 4. Flowchart of a slave segmenting tiles and boundary data as directed by the master.

Fig. 5. Experimental speedups shown by symbols, which overlay corresponding
continuously drawn theoretical speedups for different loads of data.
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where es denotes the efficiency of the slave; the numerator is the
effective work; and the denominator is the total work including the
effective work and the overhead.

Because the master does not perform segmentation, the entire
segmentation that is performed by all of the p-1 slaves is sped up by a
factor of (p-1)es. Between the time when the first and the last slaves are
finalized, the remaining workload of each active slave is bounded by n
LiDAR points because each of them has at most one tile to complete. As
soon as the first slave is finalized, a non-parallelizable workload is
introduced to the distributed scheme. Between the time the first and
the second slaves are finalized, the active slaves process with a missing
fraction of the entire slaves’ power, i.e., 1/(p-1) of the power was
already finalized. This results in n/(p-1) non-parallelizable workload.
Similarly, between the time the (i-1)th and ith slaves are finalized, (i-1)
n/(p-1) non-parallelizable workload is introduced. Therefore, the total
non-parallelizable workload is:
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where ws denotes the non-parallelizable (serial) workload of the entire
distributed processing (the initialization workload performed by the
master is a negligible constant. Hence, the ratio (P) of the parallelizable
(total minus serial) workload to the total workload is:

P
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Finally, the speedup of the entire distributed approach denoted by
Sp according to Gustafson-Barsis law (McCool et al., 2012) is:

S P P p e= 1 − + ( − 1)p s (4)

The time the master requires to devote per tile is proportional to the
number of LiDAR points it deals with, which is O(n1/2.t1/2), while the
time a slave requires to devote per tile is Ts(n) + Ts(n

1/2.t1/2) + O(n1/
2.t1/2). Thus, in order for the master to remain responsive for p-1
slaves so that the above equations hold, we should have:
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3. Results and discussions

3.1. Runtime and scalability

We adopted the tree segmentation algorithm presented by Hamraz
et al. (2016) as the single-processor building block to empirically assess
the proposed distributed processing approach. The tree segmentation
algorithm can efficiently be implemented such that Ts(n) = O(n) (see
Appendix A). We implemented the master-slave scheme using the MPI
and ran it on the University of Kentucky Lipscomb cluster, which has
256 symmetric basic nodes (Dell C6220 Server, 4 nodes per 2U
chassis), each with 16 cores (dual Intel E5-2670 8 Core – Sandy
Bridge) at 2.6 GHz and 64 GB of RAM at 1600 MHz. The nodes are
inter-connected via Mellanox Fourteen Data Rate InfiniBand (2:1 over-
subscription, 14.0625 Gbit/s) and equipped with a global file system
(DDN GridScaler SFA12K storage appliance with the IBM GPFS –

Read: 25 GB/s throughput and 780,000 IO/S, Write: 22 GB/s through-
put and 690,000 IO/S) (University of Kentucky Analytics &
Technologies). We experimented with four contiguous loads of data:
the first 200 (Fig. 1 – counting row-wise starting from the top leftmost
tile toward right and then down), 400, and 600 tiles, as well as all 801
tiles. For each load, we ran the distributed segmentation approach
using 1–12 computing nodes (i.e., 16, 32, …, 192 processing cores),

and measured the experimental speedups by dividing the observed
single-processor runtime by the observed distributed processing run-
times. The observed single-processor runtime equals the number of
tiles multiplied by average observed runtime of a tile, which equaled
31 min and 8 s (2.8% loading from disk, 94.8% computation, and 2.4%
writing to disk) averaged for a sample of 128 tiles.

Fig. 5 shows the experimental speedups overlaying the equivalent
theoretical speedups using Eq. (4) for which t=1350 and n =5×106 as
measured in the dataset. In order to calculate the exact value of es
using Eq. (1), the constant coefficients of the asymptotic functions in
the numerator and the denominator need to be measured on the
specific runtime platform. According to our measurement, the ratio of
the constant coefficient of the numerator (Ts(n) – equals to O(n) here)
to the constant coefficient of O(n1/2.t1/2) appeared in the denomi-
nator is about 150. In other words, the time required for the
segmentation of a LiDAR point cloud is approximately 150 times
greater than the time required for two-way inter-process communica-
tion (from a slave to the master and back) of the same size point cloud
on our runtime platform. Substituting the values of t, n, and the ratio of
the constant coefficients in Eq. (1), the efficiency of a slave (es) equals
0.9837. Similarly, using Eq. (5), having p-1≤9279 renders the master
to remain responsive.

As shown in Fig. 5, processing the entire tiles using 192 processing
cores resulted in a practical speedup of 167.04 (compared to 165.70 of
theory), meaning that we reduced the expected single-processor
runtime of over 17 days to 2 h and 29 min. Although a few weeks of
processing time might be acceptable for forest inventory to be
performed annually, it is infeasible for potential real-time applications,
e.g., more accurate aerial monitoring of wildfire using LiDAR (Arroyo
et al., 2008; Contreras, 2010). After all, natural forests may be several
times greater than Robinson Forest and be recorded with greater point
densities (to become affordable given the advancements of the sensor
technology) yielding much larger datasets, which even more justifies
the need for distributed processing.

The small differences between the empirical and the theoretical
speedups (Fig. 5) are likely due to natural variabilities in the dataset as
well as small differences in the runtime environment from the
theoretical assumptions. These results show that the distributed
segmentation approach can achieve nearly linear speedup using a
reasonable number of processing cores and given a sufficiently large
dataset (at least two times more tiles than the number of cores).
Because the number of tiles is typically large for forest-level data and
the number of cores is limited, scalability of the approach to arbitrarily
large datasets is fulfilled.

As the distributed approach does not assume a fixed number of
slave processes, it can also be implemented on a grid environment in
which the master can be in charge of initiating new slave processes and
rescheduling tasks in case of node failure. In case Eq. (5) is violated

Fig. 6. Number of trees detected in a block for different partitioning patterns.
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(the master is overloaded), the straightforward solution is to increase
the size of tiles to make the slaves perform proportionately more work
per each tile assignment. A more flexible solution is to augment the
distributed scheme to accommodate multiple masters in a hierarchical
fashion. An additional improvement might consider slaves not sending
boundary data to the master. Instead, they can set aside the data in a
buffer and send it later on directly to the slave who would eventually
process the boundary data. In this case, the master should be in charge
of coordinating the interactions between the slaves and would not need
to deal with receiving and sending boundary data, which decreases the
master's workload and make it independent of the tile size. Such an
improvement would not affect the asymptotic calculations of speedup
presented above, even though it may help to reduce the runtime in
practice specially if the master is overloaded and/or the inter-process
communication on the runtime platform is costly. Lastly, the master
can employ any strategy for choosing a new tile to assign next without
affecting the final result and the processing time in theory, although
assigning contiguous tiles makes boundary data become ready earlier
and results in freeing up memory earlier, which may become invaluable
depending on the circumstances.

Tailoring the proposed approach to run under the Hadoop
MapReduce infrastructure in a single stage can also be accomplished
as follows. Loading and segmentation of an individual tile should be
defined as the map phase, in which the non-boundary trees should be
output to the file system and each of the eight boundary data are
assigned a unique key for the reduce phase. The unique key of each
specific edge/corner data should be the same across all the map tasks
that share the specific edge/corner. The reduce phase should be defined

to unify all of the data it is given (edge/corner data portions having an
identical unique key), re-segment the data, and output the result to the
file system. There would not be an explicitly defined master process
because the underlying map-reduce infrastructure is responsible for
coordination between the map and the reduce tasks, as well as
scalability and fault tolerance of the entire ecosystem. In contrast,
the MPI implementation using a global scalable file system generally
runs faster because slaves barely idle, while reduce phase cannot start
processing until map phase finishes. This performance advantage is
achieved because of having explicit control over the inter-process
communications enabling design of a flexible scheduling scheme using
MPI, although it generally requires more effort and expertise to design
and program desired features for a distributed application.

3.2. Global forest parameters

Although tile size does not affect the segmentation result of the
distributed approach in theory, depending on the underlying single-
processor segmentation algorithm, it may introduce slight biases in
practice. Such biases have a direct correlation with the total length of
the shared edges of the tiles because the boundary data along those
edges are indeed the only places that are not processed exactly the
same compared to a single-processor run. In order to quantify the
biases in terms of number of trees, we processed five sample square
(1.524 km side ~ 232.5 ha area) blocks (each composed of 5×5 tiles) in
a single-processor manner as well as using the distributed approach.
We partitioned each block to uniform grids of 2×2, 3×3, …, 15×15 sub-
blocks and ran the distributed approach for each of the grid patterns.
Single-processor execution detected an average of 62,005 trees in a
block. Fig. 6 shows the average number of trees detected per block as a
function of the total length of the shared edges of sub-blocks, which
equals 2×(nsb−1) multiplied by the block side length where nsb
denotes number of sub-blocks along a block side. As expected,
additional number of trees compared with single-processor run shows
a linear relation with the total shared edge length: an average of 96
additional trees (false positives) were detected per 1 km of shared edge,
which is a small value given that more than 26,000 trees were detected
per 1 Km2.

When applied to the entire Robinson Forest, the distributed tree
segmentation approach detected a grand total of 1,994,970 trees over
the area covered by the LiDAR data. The total length of shared edges in
the tile map (Fig. 1) is 446.23 km, which results in 42,833 potential
false positives (2.15%) be introduced across the tile edges. When the
number of false positives is subtracted, the grand total of detected trees

Table 1
Estimated number of trees categorized based on tree crown class.

Fraction of existing to grand
total detected

Estimated number of
existing trees

Crown Class mean 95TCBa entire forest per ha

Dominant 0.0785 ± 75.50% 153,178 20.59
Co-dominant 0.3069 ± 23.07% 599,106 80.50
Intermediate 0.5376 ± 17.84% 1,049,446 141.32
Overtopped 0.2928 ± 43.29% 571,522 76.80
Dead 0.0625 ± 104.7% 121,917 16.38
All 1.2782 ± 13.52% 2,495,170 335.30

a 95% T-Confidence Bounds (DF=22).

Fig. 7. Estimated number of trees using LiDAR compared to field-collected along with
the 95% T-confidence intervals.

Fig. 8. Height distribution of 1,994,970 trees detected in Robinson Forest superimposed
with estimated normal mixture model.
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becomes 1,952,137.
Due to imperfectness of the single-processor algorithm, a portion of

grand total number of detected trees was associated with over-
segmentations, and a portion of existing trees in the forest was
undetected. In order to account for the over-segmentations/undetected
trees, we used the accuracy result of the single-processor segmentation
algorithm on the LiDAR point clouds (taken from the same dataset) of
a field-surveyed sample of 23 (0.1 ac) circular plots placed across
Robinson Forest (Hamraz et al., 2016). The accuracy result included
the number of detected trees (bearing over-segmentations) and the
number of existing trees (bearing undetected trees) per four crown
classes (dominant, co-dominant, intermediate, and overtopped).
Within each of the 23 plots, we calculated a fraction per crown class:
the existing trees of that crown class divided by the grand total (all
crown classes) of detected trees. Table 1 shows the mean and 95% T-
confidence bounds of the fractions across the 23 plots. It also shows the
adjusted estimates of number of existing trees, which were calculated
by multiplying the grand total number of detected trees using the
distributed approach to the corresponding fractions. Considering a
95% T-confidence interval, the total number of existing trees in the
7441.5-ha forested area is estimated to be 2,495,170 ( ± 13.52%),
which results in an average of 335.30 trees per ha.

For verification, we compared our tree number estimates (Table 1)
with equivalent estimates based on field measurements of another
sample of 23 plots from the Robinson Forest (Fig. 7). The estimates for
total number of trees differ by about 3% and the estimates of number of
dominant trees differ by about 30%. However, the large overlap
between the 95% T-confidence interval errors indicate that there is
no statistically significant difference between the estimates using
LiDAR and the field collected measurements.

Fig. 8 shows the height distribution of all detected trees (heights
above 5 m) by the approach. The height distribution follows a bimodal
pattern, which can be attributed to multistory structure of deciduous
natural forests, in which the dominant and co-dominant trees form the
over-story and intermediate and overtopped trees form the mid-story.
We fitted a normal mixture model to the bimodal distribution: the
larger lump on the right (associated with over-story trees) has a mean
height of 26.9 m and a standard deviation of 6.6 m, and the smaller
lump (associated with mid-story trees) has a mean height of 9.4 m and
a standard deviation of 2.6 m.

We compared the LiDAR-derived mean tree height estimates with
those obtained using a field sample from the forest (371 over-story and
826 mid-story trees). The sample mean height of the over-story trees
was 25.4 m with a standard deviation of 5.3 m, and the sample mean
height of mid-story trees was 17.0 m with a standard deviation of
4.1 m. Considering that the LiDAR-detected tree heights are in fact
biased by presence of falsely detected trees and absence of undetected
trees, the field estimates are close to the LiDAR-detected estimates for
over-story trees. However, the field estimates for mid-story trees are
remarkably larger than the LiDAR-detected estimates, which can be
justified as follows. Airborne LiDAR provides considerably less infor-
mation about the mid-story trees due to decreased penetration of
LiDAR points toward bottom canopy layers (Maguya et al., 2014;
Reutebuch et al., 2003), hence detected tree rate is lower for mid-story
trees (Duncanson et al., 2014; Hamraz et al., 2016). Also, the detected
mid-story trees are likely biased to be smaller within the population of
all existing mid-story trees because they are easier to detect when there
is less canopy closure, which is associated with stand age and is
minimal when stand is young and in general has smaller trees (Jules
et al., 2008). So, detecting relatively fewer mid-story trees that are also
likely biased to be smaller leads to capturing a distribution with smaller
mean and standard deviation. After all, the only information used to fit
the normal mixture model was the heights of the trees while height may
not be sufficient for classification, i.e., a moderately tall tree can in fact
be mid-story if situated in a taller stand while the mixture model
always probabilizes it strongly as over-story according to its height, and

vice versa. Thus, the procedure of fitting the normal mixture model
likely separates the two tree classes more distantly with respect to
height.

In addition to providing number of trees and height distributions
(compared here to field surveys for validation), the distributed
approach enables identification of individual tree locations and attri-
butes (tree height and crown widths) as well as the point cloud
segments representing tree crowns for large forested areas in a timely
manner, which in turn enables building a detailed (at the individual
tree level) forest model and performing a myriad of more accurate
analyses. For instance, tree attributes can be used to develop allometric
equations to estimate other important tree metrics such as DBH and
volume, and the point cloud segments can be used to construct the 3D
geometric shape of each individual tree crown to develop mode detail
estimates such as crown volume, biomass, and carbon content.

3.3. Approach application to other spatial datasets

As mentioned earlier, the approach uses a single-processor tree
segmentation algorithm as a building block and does not require any
knowledge on how the algorithm functions. So, the approach may be
used to straightforwardly adopt any other single-processor object
identification/segmentation algorithm in order to scale up processing
arbitrarily big spatial and geospatial datasets, such as remotely sensed
buildings, cars, planets, etc. The only caveat is that the objects may not
be greater than the tiles, i.e., they may not touch more than two
adjacent edges of a tile.

Moreover, generalization of the approach to process 3D spatial data
can be accomplished similarly as follows. Instead of tiles that are
representing surfaces, cubes representing volumes will be the data
units for 3D data. Boundary data in this case would be surface (shared
between two cubes), edge shared among four cubes, and corner (shared
among eight cubes) that can be handled for distributed processing
using the master-slave processing scheme presented in Section 2.2. The
theoretical runtime analysis for 3D data would be slightly different. The
average number of the entire objects within the cube is proportional to
the cube volume while the number of boundary objects (those touching
a cube surface) is proportional to the cube surface area. Hence, the
number of boundary objects equals the number of objects within the
cube raised to 2/3 power, which changes the master/slave overheads
and Eqs. 1 and 5 need to be updated accordingly.

4. Conclusions

Obtaining tree-level information over large forested areas is in-
creasingly important for accurate assessment, monitoring and manage-
ment of forests and natural resources. Several automated tree segmen-
tation methods have been developed, but these methods have only been
applied to small forested areas for accuracy assessment. Although these
methods can in theory be applied to larger areas, such applications is
not straightforward because LiDAR data covering forest-level data far
exceeds the memory of desktop computers and may also take unac-
ceptably long time to be processed sequentially. Here we presented and
analyzed a scalable distributed approach that was applied to segment
trees within a LiDAR point cloud covering an entire forest. The
distributed approach segmented trees within the tiles and across the
tile boundaries, and introduced a minimal bias compared with the
single-processor algorithm that was also quantified in this work.
Comparison of the estimated number of trees and the tree height
distribution with the field surveys validated sound operation of the
approach. We presented the distributed processing approach and the
associated analysis in a platform-independent manner so as the
implementation can be accomplished on different distributed platforms
with minor modifications.

The presented approach enables obtaining individual tree locations
and point cloud segments representing the tree crowns for entire
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forested areas in a timely manner. The resulting detailed, tree-level
information has the potential to increase the accuracy of forest level
information by creating remotely sensed forest inventories for more
efficient management of forest and natural resources. Although the
distributed approach was presented within the context of tree segmen-
tation from LiDAR point clouds, it can straightforwardly be applied to
segment/identify objects within other large-scale datasets.
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Appendix A. : Efficient implementation of segmentation algorithm and runtime analysis

The tree segmentation algorithm we used as a building block in this study (Hamraz et al., 2016) consists of a pre-processing step including
homogenizing the point cloud, removing non-surface points, smoothing, and then a loop over the five major steps outlined below until the entire
point cloud is clustered: 1) locate the non-clustered highest point - global maximum (GMX); 2) generate vertical profiles originating from the GMX
with a length of maximum tree crown radius; 3) For each profile, identify the LiDAR point along the profile that represents the crown boundary; 4)
create a convex hull of the identified boundary points; and 5) cluster all LiDAR points encompassed within the convex hull as the highest tree crown.

For an efficient implementation, the point cloud should be indexed in a 2D horizontal grid. Indexing and the pre-processing step takes O(n)
where n is the number of points. We assume that the main loop iterates m times. Naively locating the GMX (step 1) takes O(n) per iteration.
Instead, we create a descendingly sorted list of all of the grid cells according to the height of the point they contain and mark all cells as unvisited.
The sorting procedure takes O(n.㏒n). The grid cells are marked as visited when they are clustered in step 5. To locate the non-clustered GMX, the
sorted list is traversed from the position of the previous GMX forward, which on average takes O(n/m) per iteration. Once the GMX is located,
clustering the highest tree (steps 2–5) has a runtime independent of n and m and is proportional to the tree size, which is bounded and can be
assumed as a constant. So, the aggregate runtime of each iteration of the loop is O(m/n), hence the total runtime of the loop becomes O(n).
Aggregating the pre-processing and the sorting times:

T n O n O n n( ) = ( ) + ( . log )s (A.1)

where Ts(n) is the total runtime of the algorithm; the first term on the right-hand side corresponds to the runtime of the main loop and the pre-
processing step; and the second term corresponds to the runtime of the sorting procedure before the loop.

We ran the implementation above on a workstation of 3.4 GHz CPU speed and 8 GB of RAM for 25 loads of data. Fig. A.1 shows the log-log plot
of the runtime of the segmentation versus the number of points.a

The slope of the best fit line to the square symbols is 1.03, which concurs with the linear term of Eq. (A.1). Also, the triangle symbols show a
slightly super-linear pattern concurring with the non-linear term. We measured the constant coefficients of both terms by dividing the execution
times associated with the terms by n and n.㏒n respectively. The ratio of the linear coefficient to the non-linear one is platform-independent and is
about 7800 according to our measurement. This yields that n should be greater than 27800 in order for the non-linear term to start dominating the
linear term, which corresponds to a LiDAR point cloud covering over 3e+2331 times surface area of the earth. So, we may safely replace ㏒n in the
non-linear term with an upper bound constant, which reduces Eq. (A.1) to:

T n O n( ) = ( )s (A.2)

Fig. A.1. Log-log plot of the Segmentation runtime versus the number of LiDAR points in the point cloud. Each symbol corresponds to average across 15 strata.
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