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Abstract 
Digital elevation models (DEMs) derived from light detection and ranging 
(LiDAR) technology are becoming the standard in representing terrain surfaces. 
They have numerous applications in forestry, agriculture, and natural resources. 
Although elevation errors are much lower than those derived from traditional 
methods, accuracies have been reported to decrease with terrain slope and ve-
getation cover. In this study, we quantified the accuracy of airborne Li-
DAR-derived DEM in deciduous eastern forests of the Cumberland Plateau. We 
measured relative elevation changes within field plots located across different 
slope and ruggedness classes to quantify DEM accuracy. We compared eleva-
tion change errors of DEMs derived from three LiDAR datasets: a low-density 
(~1.5 pts∙m−2), a high-density (~40 pts∙m−2), and a combined dataset. We also 
compared DEMs obtained by interpolating the ground points using four inter-
polation methods. Results indicate that mean elevation change error (MECE) 
increased with terrain slope and ruggedness with an average of 73.6 cm. MECE 
values ranged from 23.2 cm in areas with lowest slope (0% - 39%) and rugged-
ness (0% - 28%) classes to 145.5 cm in areas with highest slope (50% - 103%) 
and ruggedness (46% - 103%) classes. We found no significant differences 
among interpolation methods or LiDAR datasets; the latter of which indicates 
that similar accuracy levels can be achieved with the low-density datasets. 
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1. Introduction 

Digital elevation models (DEMs) derived from airborne light detection and 
ranging (LiDAR) technology are becoming the standard in representing terrain 
surfaces due to its ability to accurately describe relief across large landscapes. 
LiDAR-derived DEMs have numerous applications in natural resources [1] [2] 
[3]. In forestry, DEMs are commonly used in hydrological applications (i.e., [4] 
[5]) and increasingly in forest operations planning (i.e., [6] [7] [8]). The accura-
cy of LiDAR-derived DEMs is considerably higher than DEMs derived from al-
ternative sources such as aerial photography or satellite imagery [1] [2] [9], 
which facilitates the creation of high-resolution DEMs (≤1 m) and in turn in-
creases their applications. 

The accuracy in altimetry of high-resolution LiDAR-derived DEMs is com-
monly reported by data providers to be between 15 - 25 cm [9] [10] [11]. How-
ever, elevation errors are typically measured on flat, smooth terrain with no ve-
getation cover [12] [13]. LiDAR system parameters such as flight path, scan an-
gle and point density [14] [15] [16] as well as data processing procedures such as 
point filtering and interpolation methods [17] [18] [19] [20] can have an effect 
on the derived DEM accuracy. Several studies have also demonstrated that vege-
tation cover, terrain slope, and terrain variability can have a significant effect on 
elevation errors [21] [22] [23] [24] [25]. In general, elevation errors increase 
with vegetation cover and amount of understory as well as with increasing ter-
rain slope and variability [26] [27] [28]. 

Most studies quantifying elevation errors from LiDAR-derived DEMs are 
based on static modes where errors are calculated using a permanent network of 
GPS stations that measure in continuous mode. Where not possible, GPS units 
with real time kinematics (RTK) technique are used to obtain accurate elevation 
of individual ground control points [10] [29] [30]. These GPS elevations read-
ings are considered true values and compared with DEM-derived elevations. 
However, in forests with complex vegetation (dense, multistoried canopies 
formed by multiple species) and complex terrain conditions (steep, narrow, and 
short slopes with numerous rock formations), satellite signal strength is weak 
preventing the use of even high-end GPS units to obtain accurate elevations 
measures [31] [32]. Consequently, there is a lack of studies evaluating the accu-
racy of LiDAR-derived DEMs in areas with complex vegetation and terrain con-
ditions. Such is the case of forests in the Cumberland Plateau of the Appalachian 
Mountains, in the United States where there is an increasing interest in using 
LiDAR data for forestry, hydrology, mining, risk assessments, and wildlife ap-
plications [33] [34]. 

The objective of this study was to quantify elevation errors of high-resolution, 
LiDAR-derived DEM in areas with complex vegetation and terrain conditions 
using an alternative ground truth data collection method. Instead of using GPS 
units to collect elevations of control points, we used an alternative method that 
measured multiple relative elevation changes within field terrain plots. Elevation 
changes were measured between plot center and multiple points located at dif-
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ferent distances and azimuths using a star-shaped plot design. This alternative 
ground truth data collection method is more appropriate to assess the ability of 
LiDAR-derived DEM to accurately represent terrain surfaces instead of compar-
ing individual point elevations. Several DEM applications require computing 
elevation changes among different locations (hillshade, slope, flow accumula-
tion, flow direction among others), hence a direct assessment of this relative 
elevation error provides useful information regarding the error propagation to 
those applications when using LiDAR data. Lastly, this study overcomes prob-
lems of complex vegetation and terrain conditions for the use of GPS with RTK 
by developing and using this novel DEM sampling method for elevation accura-
cy assessments. 

2. Methods 
2.1. Study Area 

Research was conducted at The University of Kentucky’s Robinson Forest (Lat. 
37.4611, Long. −83.1555), located in the rugged eastern section of the Cumber-
land Plateau region of southeastern Kentucky in Breathitt, Perry and Knott 
counties (Figure 1). Due to access limitations, we restricted the study area to the 
Clemons Fork and Lewis Fork watersheds within Robinson Forest covering an 
area of almost 1800 ha. Terrain across the study area and the entire Robinson 
Forest is characterized by a branching drainage pattern, creating narrow ridges 
with sandstone and siltstone rock formations, curving valleys and benched 
slopes. The slopes are dissected with many intermittent streams [35] and are 
moderately steep ranging from 10 to over 100%, predominately northwest and 
southeast aspects, and elevation ranging from 252 to 503 meters above sea level. 
Vegetation is comprised of a diverse contiguous mixed mesophytic forest made  
 

 
Figure 1. Topography of the study area (1797 ha) within Robinson Forest (4250 ha) lo-
cated in Breathitt, Knott, and Perry counties in southeastern Kentucky (Lat. 37.4611, 
Long. −83.1555). 
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up of approximately 80 tree species with northern red oak (Quercusrubra), white 
oak (Quercus alba), yellow-poplar (Liriodendron tulipifera), American beech 
(Fagus grandifolia), eastern hemlock (Tsugacanadensis) and sugar maple (Acer 
saccharum) as dominant and codominant species, while understory species in-
clude eastern redbud (Cerciscanadensis), flowering dogwood (Cornusflorida), 
spicebush (Lindera benzoin), pawpaw (Asiminatriloba), umbrella magnolia 
(Magnolia tripetala), and bigleaf magnolia (Magnolia macrophylla) [35] [36]. 
Average canopy cover across Robinson Forest is about 93% with small openings 
scattered throughout. Most areas exceed 97% canopy cover but recently har-
vested areas have an average cover as low as 63%. After being extensively logged 
in the 1920’s, most of Robinson Forest is considered second growth forest rang-
ing from 80 - 100 years old, and is protected from commercial logging and min-
ing activities that are typical land uses in the region [36]. 

2.2. LiDAR Datasets 

We used two LiDAR datasets covering the study area, collected with the same 
LiDAR system by the same vendor. One dataset was low density (~1.5 pt∙m−2) 
collected in the spring of 2013 during leaf-off season for the purpose of ac-
quiring terrain information, as part of a state-wide elevation data acquiring 
program from the Kentucky Division of Geographic Information. The second 
dataset was high density (~40 pt∙m−2) acquired in the summer of 2013 during 
leaf-on season for the purpose of collecting detailed vegetation information by 
the University of Kentucky’ Department of Forestry. The parameters of the 
LiDAR system and flight for both datasets are presented in Table 1. The ven-
dor processed both raw LiDAR datasets using the TerraScan software [37] to 
classify LiDAR points into ground and non-ground points. A third dataset was 
also created by combining both low-density and high-density points. For  
 
Table 1. LiDAR data acquisition parameters used for both datasets collected over 
Robinson Forest. 

 Leaf-off dataset Leaf-on dataset 

Date of acquisition April 23, 2013 May 28-30, 2013 

LiDAR system Leica ALS60 Leica ALS60 

Average flight elevation above ground 3096 m 1305 m 

Average flight speed 105 knots 105 knots 

Scan frequency 200 kHz 200 kHz 

Scan angle <40˚ <40˚ 

Overlap between adjacent strips 50% 50% 

Average swath width 701 m 183 m 

Maximum number of returns captured 3 5 

Average footprint diameter 0.25 m 0.1 m 

Nominal pulse spacing <1.0 m <0.2 m 
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each of the three LiDAR datasets (low-density, high-density, and combined), the 
“Create LAS Dataset” tool in ArcGIS (ArcMap, version 10.2) was used to create a 
LASer (LAS) dataset file. The LAS dataset was then filtered to include ground 
points only, and the “LAS dataset to Raster” tool in ArcMap was used to create a 
1-meter resolution DEM. Four DEMs for each dataset were created considering 
the average (AVG), inverse distance weighted (IDW), minimum (MIN), and 
nearest neighbor (NN) interpolation methods. As a result, a total of 12 DEMs 
covering the study area were created; three LiDAR datasets and four interpola-
tion methods. 

2.3. Sampling Design 

We expected LiDAR-derived DEM errors to vary with terrain steepness and 
ruggedness (variability). For the purpose of identifying areas with different levels 
of terrain steepness and ruggedness in which to locate terrain sample plots, we 
resampled a 1-m resolution slope raster to a coarser resolution of 36.6 m (120 ft.) 
using the average value. This 36.6-m resolution was selected to provide a more 
meaningful scale across the study area and to match the size of field plots used to 
collect terrain surface information. The coarser resolution slope raster was only 
used to create three slope classes (low, medium, and high) with relatively similar 
area across the study site (Table 2, Figure 2(a)). Terrain ruggedness was also 
calculated at the coarser resolution as the slope variability of the 1-m slope ras-
ter, as used by [38] to determine slope heterogeneity. Slope variability for each 
cell in the coarser resolution raster was defined as the range (max slope–min 
slope) of slope values (Figure 2(b)). The study area was then divided into three 
ruggedness classes (low, medium, and high) with similar surface areas in each 
class (Table 2). Slope and ruggedness raster layers were then overlaid to identify 
the nine combined slope/ruggedness classes, in which five field plots were ran-
domly located resulting in a total of 45 field plots (Figure 3). 
 

 
(a)                                      (b) 

Figure 2. Coarser 36.6-m resolution raster layers showing percent slope (a) and variabili-
ty of percent slope, terrain ruggedness (b) across the study area used to create the nine 
combinations of slope/ruggedness categories in which to locate terrain sample plots. 
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Figure 3. Location of field plots within the study area. First letter in the abbreviated plot 
categories indicates level of ruggedness (second letter) and third letter indicates level of 
slope (fourth letter). 
 
Table 2. Area (ha) under each combination of slope and ruggedness category considered 
to randomly select field plots to collect surface terrain information. 

 

 Slope  

Total Low Medium High 

(0% - 39%) (40% - 50%) (50% - 103%) 

 Low (0% - 28%) 81.7 257.4 205.4 544.5 

Ruggedness Medium (28% - 45%) 207.4 201.1 219.8 628.2 

 High (46% - 103%) 301.7 157.7 164.5 624.0 

Total 590.8 616.2 589.7 1796.7 

2.4. Field Plot Data Collection 

Prior to the acquisition of LiDAR data, 1.2-meter square plywood boards, 
painted white were installed at the 45 plot locations determined using a 
hand-held GPS unit of a 6.1 m accuracy. Boards were installed leveled with their 
centers placed at the GPS determined location. After LiDAR acquisition, 3D 
coordinates and intensity values of LiDAR ground points were visually inspected 
and boards were clearly identified on 32 plots. The exact location of the remain-
ing 13 field plots were found using field triangulation from easily identifiable 
features in both the LiDAR data and on the field. These features consisted of 
dominant trees, rock formations, road intersections, and other road features 
(i.e., cut and fill slope areas, ditch relief culverts, and bends). Azimuth and hori-
zontal distance were measured using an electronic compass (MapStar Compass 
Module II, Laser Technology Inc.) and a sighted laser range finder (Impulse 200 
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LR, Laser Technology Inc.) mounted on a tripod. 
Once the location of a given plot was identified, eight transects extending 18.3 

m (60 ft.) from plot center were established covering 360˚ at 45˚ intervals (four 
cardinal and four ordinal directions). At six points along each transect, every 
3.05 m (10 ft.) horizontal distance from plot center, we measured elevation 
change (vertical distance) between the plot center and the points (Figure 4). 
Elevation change for the 48 points (8 transect × 6 points) was measured by 
mounting the electronic compass and laser range finder on a tripod at the plot 
center and moving a target, mounted on a pole at the same height above the 
ground as the range finder, to each point. The location of a given point along a 
transect was determined by measuring the azimuth using the electronic compass 
with a precision of 1˚ and the horizontal distance using the sighted laser range 
finder within 0.06 m. 

2.5. Data Analysis 

The x- and y-coordinates of the 2,160 points (45 plots × 48 points) were ob-
tained based on the plot center coordinates, horizontal distance from plot center, 
and azimuth of the corresponding transect. For a given point, the Li-
DAR-derived DEM elevation change was obtained from the elevation values of 
the DEM cells containing the location of the point and the plot center. Elevation 
changes from the field plots were considered true values. Errors in elevation 
change were calculated as the absolute difference between field plot elevation 
changes and DEM-derived elevation changes. The total 2160 elevation change 
errors were arranged by plot number and combination of slope and ruggedness  
 

 
Figure 4. Diagram of the eight transects and six locations along transects used to collect 
elevation change information on each field plot. 
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class. Mean elevation change errors (MECE) were compared by slope and rug-
gedness class. The calculation of MECE was repeated for the twelve different 
DEMs to examine the effect of the LiDAR dataset and interpolation method. We 
tested for significant differences in MECE among slope and ruggedness catego-
ries using a 2-way analysis of variance (ANOVA) test in SAS 9.3 (Statistical 
Analysis Software, SAS Institute, Cary, NC, USA). 

3. Results and Discussion 

The overall mean error for all DEM-derived elevation changes from all three 
LiDAR datasets and four interpolation methods was about 73.6 cm (Table 3). 
Differences in MECE among LiDAR datasets were very small (within 1.5 cm) 
with the high-density and combined datasets provided the lowest (72.7 cm) and 
highest (74.1 cm) MECE, respectively. No significant differences were found 
among LiDAR datasets. When comparing interpolation methods, MECE values 
were even more similar ranging from 73.4 to 73.8 cm (Figure 5). 

As expected, MECE increased with slope and ruggedness level (Figure 6). 
Values ranged between 42.5 cm and 100.4 cm from low to high slope classes, and 
between 53.2 cm and 96.0 cm from low to high ruggedness classes. Although 
MECE values among slope and ruggedness classes were significantly different 
(non-overlapping 95% confidence intervals), slope seemed to have a larger effect 
as evidenced by the larger variation. Even more variability in MECE values was 
observed when considering individual combinations of slope and ruggedness, 
ranging from 23.2 cm for the low slope/low ruggedness class to 145.5 cm for the 
high slope/high ruggedness class (Figure 7). Within the high ruggedness class, 
there is a clear increase in MECE with increasing slope, all of which were signifi- 
 
Table 3. Area (ha) under each combination of slope and ruggedness category considered 
to randomly select field plots to collect surface terrain information. 

Ruggedness Slope 

Leaf-off, low-density  
(1 pt∙m−2) 

Leaf-on, high-density  
(40 pt∙m−2) 

Combined 

AVG IDW MIN NN AVG IDW MIN NN AVG IDW MIN NN 

High 

High 145.7 145.7 146.1 145.7 144.9 145.0 144.1 145.9 145.5 145.6 146.1 145.5 

Med 103.8 103.9 103.7 104.3 92.0 92.0 92.8 92.2 108.5 108.4 108.8 108.7 

Low 40.6 40.7 40.6 41.5 41.1 41.3 39.8 41.8 40.6 40.6 40.5 40.3 

Med 

High 91.2 91.2 91.9 91.9 94.1 94.2 95.3 95.1 89.5 89.9 93.0 91.8 

Med 64.1 64.2 64.9 64.6 54.4 54.4 55.2 54.6 56.5 56.6 57.6 57.1 

Low 63.9 63.8 64.3 63.8 63.0 63.1 64.4 63.5 63.0 63.1 64.9 63.6 

Low 

High 63.6 63.7 64.3 64.0 64.6 64.1 65.1 63.1 61.6 61.2 61.8 60.7 

Med 68.3 68.2 67.8 68.3 77.3 77.3 74.3 77.1 76.5 76.7 71.7 77.2 

Low 22.9 23.0 22.9 23.2 21.9 21.9 23.8 22.4 23.7 23.7 24.0 24.4 

Averages 
73.8 73.8 74.1 74.1 72.6 72.6 72.8 72.9 73.9 74.0 74.3 74.4 

74.0 72.7 74.1 

346 



M. A. Contreras et al. 
 

 
Figure 5. Mean elevation error averaged by LiDAR dataset and interpolation method 
with their respective 95% confidence intervals. 
 

 
Figure 6. Mean elevation error by slope and ruggedness classes averaged from all LiDAR 
datasets and interpolation methods with 95% confidence intervals 
 

 
Figure 7. Mean elevation error by combination of slope and ruggedness classes averaged 
from all LiDAR datasets and interpolation methods with 95% confidence intervals. 
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cantly different among classes. Although in the other two ruggedness classes the 
MECE generally increased with slope, there was a less clear pattern. Within the 
medium ruggedness class, the high slope class had the highest MECE value 
which was significantly different than that of the medium and low slope classes. 
Within the low ruggedness class, the low slope class had the lowest MECE, 
which was also significantly different than the other two slope classes. A two- 
way ANOVA that combined MECE from all LiDAR datasets and interpolation 
methods corroborated these results (Table 4). Differences of the mean MECE 
values among slope classes (p < 0.0001) and ruggedness classes (p < 0.0001) were 
all significantly different. We also found a significant interaction between slope 
and ruggedness (p < 0.0001). In addition, slope classes had the highest F-value of 
two effects tested, which is further evidence of the greater impact of slope on 
MECE (Table 4). 

The average error in elevation change from the surface terrain represented by 
the LiDAR-derived DEMs was about 74 cm, which is within values of elevation 
errors reported in the literature obtained from comparing point elevations using 
GPS units and LiDAR data (0.1 - 2.7 m) [39] but higher than errors provided by 
several studies [21] [23] [25]. Results showed that both slope and ruggedness 
had a significant effect on the MECE. Similar relationships have been reported 
by other studies. For example, [22] found that elevation error in steeper terrain 
was about twice as large as those in flatter terrain. Also [24] found even larger 
differences, three times as large, between elevation errors in steep and flat slopes. 
Similar patterns of larger elevation errors have been reported in areas with larger 
terrain ruggedness [28] [40]. A likely reason is the misclassification of LiDAR 
points into ground and non-ground (vegetation) points. Classification algo-
rithms assume that the lowest elevation LiDAR point in a given window (1 × 1 
m) represents a ground point and that the slope between adjacent ground points 
is lower than slope between ground points and adjacent non-grounds point [41]. 
In steep and rugged terrain, these assumptions typically result in ground points 
with higher elevations than the lowest elevation point within the given window 
being misclassified as low vegetation [42]. This misclassification of LiDAR 
points are likely numerous in areas with small rock formations (i.e., outcrops 
and cliffs) and slopes steep enough that tree crowns are in close proximity to the 
ground, such as that of our study area. Although, we did not formally test for 
point misclassification, visual inspection of rugged area showed such cases, 
which likely resulted in large elevation errors. 

Although there were large differences in point densities between the low- and 
high-density datasets, there were no statistical differences in the MECE. This is  
 
Table 4. Two-way ANOVA using slope and ruggedness. 

 ANOVA SS Mean Square F Value PR > F 

Ruggedness 89.00 44.50 30.59 <0.0001 

Slope 164.55 82.28 56.55 <0.0001 

Ruggedness × Slope 80.90 20.22 13.9 <0.0001 
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likely because the high-density data was collected during leaf-on season and only 
a small proportion of points were able to penetrate the dense canopy and reach 
the ground level. Figure 8 illustrates the spatial distribution of ground points of 
the three LiDAR datasets where only a small amount of additional ground points 
can be observed in the high-density dataset. The similar DEM accuracy level of 
low- and high-density datasets indicates the importance of the season where data 
is collected, and thus the importance of vegetation structure on ground elevation 
error. It seems preferable to acquire LiDAR data during leaf-off season to accu-
rately represent terrain surfaces using LiDAR data. On the contrary, if one is in-
terested in retrieving vegetation attributes, then collecting LiDAR information 
during leaf-on season seems more appropriate. Several studies have reported 
similar findings [43] [44]. Our results also showed no significant differences 
among interpolation methods with mean elevation error within 1 cm for all 
three LiDAR datasets. This is likely because of the nominal pulse spacing of both 
datasets was lower than the 1 m resolution of the LiDAR-derived DEMs. Other 
studies evaluating different interpolation methods have found significant differ-
ences for larger resolution (>5 m) and similar result for fine resolutions [45] 
[46]. 
 

 
Figure 8. Shown is the LiDAR ground point pattern and distribution across a landscape 
for the high-density (a) low-density (b) and combined (c) LiDAR datasets. 
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4. Conclusions 

The increasing interest in using LiDAR data for forestry and natural resources 
applications creates a need to evaluate the accuracy of LiDAR-derived DEM. 
There are numerous studies quantifying elevation errors and the effect of terrain 
slope, ruggedness, and vegetation cover. However, there is a lack of studies 
measuring elevation error in areas with complex terrain and vegetation condi-
tions due to weak GPS satellite signal strength. We used an alternative method to 
assess DEM accuracy based on measuring elevation changes within 0.1-ha ter-
rain plots. As several DEM applications require the calculation of elevation 
changes among different locations (slope and flow accumulation among others), 
there is a need to directly assess relative elevation change errors instead of abso-
lute elevation error from individual control points. Our approach is then more 
appropriate to assess the ability of LiDAR-derived DEM to accurately represent 
terrain surfaces. This method is applicable to many areas with complex vegeta-
tion and terrain conditions, such as those of the Cumberland Plateau of the Ap-
palachian Mountains as well as other mountainous areas. 

Terrain slope and ruggedness had a significant effect on the accuracy of Li-
DAR-derived DEMs, but slope had a larger effect. MECE ranged from 42.5 cm 
in areas with flat terrain to 100.4 cm in areas with steep terrain. MECE values 
ranged between 53.2 cm and 96.0 cm in areas with low to high terrain rugged-
ness. A larger MECE variation was observed when evaluating the combined 
slope/ruggedness classes, with values ranging from 23.2 cm in areas with lowest 
slope and ruggedness classes to 145.5 cm in areas with highest slope and rug-
gedness classes. Despite large difference in point density among LiDAR dataset 
(low-, high-density, and combined), errors were similar mainly because of the 
high-density dataset was collected during leaf-on season and only a small por-
tion of points reached the ground. The small amount of additional ground point 
in the high-density dataset was not enough to have an effect on the DEM accu-
racy. As the DEM analyzed had a relatively high resolution of 1 m and above the 
nominal pulse spacing, interpolation methods also did not have an effect on the 
MECE. Larger resolution should be included in future research to evaluate their 
effect, especially in steep and rugged areas under dense vegetation cover. Al-
though LiDAR point misclassification was not formally tested, visual inspection 
of terrain plots in the rugged terrain class showed clear evidence of such cases, 
which indicates the need to evaluate alternative classification algorithms to de-
termine the most appropriate for areas with complex terrain and vegetation 
conditions. 
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