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Thinning is a common silvicultural treatment being widely used to restore different types of overstocked
forest stands in western U.S. because of its effect on changing fire behavior. Typically, thinning is applied
at the stand level using prescriptions derived from sample plots that ignore variability in tree sizes and
location within stands. Thinning prescriptions usually specify tree removal in terms of number of trees or
basal area, resulting in a large number of cut-tree spatial patterns that meet the same prescription. How-
ever, the effect of each pattern on reducing crown fire potential can vary widely depending on the spatial
distribution of leave-trees after treatment. Additionally, stand-level thinning prescriptions ignore cut-
tree locations, which influence the economic efficiency of the thinning operations. Lastly, decisions on
tree selection affect future competition levels of remaining trees, but the associated spatial and temporal
effects on tree growth and crown fire potential over time are not considered in the development of thin-
ning prescriptions. To address the limitations of current stand-level thinning practices, we designed a
computerized approach to optimize individual tree removal and produce site specific thinning prescrip-
tions that efficiently reduce crown fire potential. Based on stem map and tree attributes derived from
light detection and ranging (LiDAR) technology and a distance-dependent individual tree growth model,
current and future tree-level fuel connections between adjacent trees were predicted and used as mea-
sures of crown fire potential. The approach makes the spatial selection of cut- and leave-trees that most
efficiently reduces crown fire initiation and propagation over time while ensuring cost efficiency of the
thinning treatment. Application results on a forest stand in western Montana show that the optimal tree
selection provided by the computerized approach can reduce crown fire potential more efficiently than
current thinning practices represented by a manual selection of tree removal.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

High intensity wildfires have resulted in large financial, social,
and environmental costs in western U.S. This trend is not likely
to decline soon; some estimates suggest that more than 27 million
ha of forestland in the western U.S. have departed significantly
from natural wildland fire conditions and are at medium to high
risk of catastrophic wildfires (Schmidt et al., 2002). In response
to the continuing threat of severe wildfires, the National Fire Plan
(USDA and USDI, 2001) and the Healthy Forest Restoration Act
(2003) promoted restoring forest habitats and reducing the risk
of wildfire on federal lands.

Thinning has been widely used for restoring different types of
overstocked forest stands (O’Hara et al., 1994) because it can
ll rights reserved.
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change stand structures and alter fire behavior (Graham et al.,
1999, 2004; Agee and Skinner, 2005). Typically, thinning treat-
ments are applied at the stand-level using prescriptions developed
from field sample plots, and cut-trees are subjectively selected by
forest practitioners according to given prescriptions. However, the
efficiency and effectiveness of these stand-level thinning practices
are hardly evaluated when applied for reducing crown fire poten-
tial due to the following reasons. First, it is difficult to estimate the
effects of thinning on altering fire behavior within a stand using
average stand attributes. Stand-level thinning prescriptions are de-
signed to reduce the likelihood of crown fire initiation by increas-
ing canopy base height, and reduce crown fire propagation by
decreasing canopy bulk density (Keyes and O’Hara, 2002; Graetz
et al., 2007). However, due to variability within stands, canopy
base height is difficult to estimate and neither the lowest nor the
average crown base height (measured on an individual tree) is
likely to be representative of the stand as a whole (Scott and
Reinhardt, 2001). Moreover, the calculation of canopy bulk density
assumes canopy fuels are distributed uniformly throughout the
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stand, which is unlikely the case even in stands with simple struc-
tures (Scott and Reinhardt, 2001). Secondly, current stand-level
thinning prescriptions usually specify percentages of total tree re-
moval or per size class in terms of number of trees or basal area
(Graham et al., 1999; Agee and Skinner, 2005), resulting in a large
number of spatial patterns of cut-trees that meet the same thin-
ning prescription for a stand (Contreras, 2010). Individual foresters
who select and mark cut-trees are unable to evaluate the effects of
each pattern on reducing crown fire potential, which can vary
widely depending on the resulting spatial distribution of remaining
trees after treatment (Contreras, 2010). Thirdly, stand-level thin-
ning prescriptions often ignore the location of cut-trees relative
to extraction points (i.e., road side or log landings), and thus forest
practitioners often pursue ‘‘easy’’ trees to extract as long as it
meets the thinning prescription without considering the effects
on altering fire behavior (Contreras, 2010; Contreras and Chung,
2011). Lastly, decisions on cut-tree selection also affect micro-
conditions and competition levels of remaining trees, thus
influencing tree growth and fire behavior within a stand over time
(Pretzch et al., 2002; Skov et al., 2004). However, spatial and tem-
poral effects of remaining trees on individual tree growth and
crown fire potential over time have not been considered when
developing thinning prescriptions (Contreras, 2010).

The limitations described above are mainly due to the lack of
individual tree-level information available for development and
evaluation of detailed, site-specific thinning prescriptions. How-
ever, LiDAR technology, which has been widely used in recent
years to obtain individual tree locations and attributes (Maltamo
et al., 2006; Packalén and Maltamo, 2006; Suratno et al., 2009),
can be used to capture spatial variability of individual trees within
a stand and produce stem maps and tree attributes. To address the
limitations of current stand-level thinning practices, we designed a
computerized approach to optimize the selection of tree removal
for an individual stand that can most efficiently reduce the suscep-
tibility to high intensity crown fires over time while ensuring the
economic efficiency of thinning operations. Using LiDAR-derived
stem map and tree attributes, we characterized fuels by quantify-
ing fuel connections among individual trees and made a spatial
selection of cut- and leave-trees to reduce the risk of crown fire ini-
tiation and propagation to and through the stand canopy. Our ap-
proach design includes four functional modules for: (1) quantifying
vertical and horizontal fuel connectivity of individual trees in a
stand, (2) predicting individual tree growth over time using a dis-
tance-dependent growth model, (3) estimating location-specific
costs of timber harvesting for individual trees, and (4) optimizing
selection of cut-trees to maximize and maintain discontinuities
in fuel connectivity over time while ensuring cost efficiency. We
applied our computerized approach to a 4.6-ha forest stand located
in the University of Montana’s Lubrecht Experimental Forest (LEF)
in western Montana. We considered an initial thinning prescrip-
tion that removed all trees with diameter at breast height less than
12.5 cm (5 in.). Cut- and leave-tree selection was then optimized
for the remaining trees to meet a target tree density of 300
leave-trees per ha after the initial thinning prescription.
2. Methods

2.1. LiDAR-derived stem map and tree attributes

In this study, we used LiDAR data acquired by the National Cen-
ter for Landscape Fire Analysis (NCLFA) over the LEF located
approximately 48 km northeast of Missoula, Montana in the Black-
foot River drainage (N46�5303000, W�113�260300) (Fig. 1). LiDAR data
acquisition parameters used for LEF (Table 1) provided an average
return density of about 1 return per 2.29 m2 on the ground with a
vertical and horizontal accuracy of 0.15 m and 0.25 m, respectively
(Suratno et al., 2009).

Researchers at the NCLFA separated the raw three-dimensional
LiDAR points into vegetation (aboveground) and bare earth points
using a triangulated irregular network densification method avail-
able in the TerraScan software suite (Terrasolid, 2004). Ground
points were used to create a digital elevation model (DEM) using
inverse distance weighted interpolation at 1 m resolution. The
DEM and aboveground points were used to calculate the canopy
height model (CHM) using the spot elevation method (Daniels,
2001). This approach computed the canopy height (elevation above
ground level) at each point by subtracting the DEM height from the
CHM (Suratno et al., 2009).

NCLFA researchers delineated individual trees using a stem
identification algorithm based on a combination of variable win-
dow local maxima filtering (Popescu and Wynne, 2004) and
neighborhood canopy height variance and return density (Rowell
et al., 2006). This approach anticipated crown width (CW) as a
function of canopy height and stand structure. For a given point
in the CHM, the approach searched for higher points within a ra-
dius of one half the expected crown width (CW). If no such points
were found, the given point in the CHM was assumed to be a tree
top. This process was conducted for every point in the CHM to
produce a stem map (Suratno et al., 2009). For trees species at
LEF, CW was expected to be 33% of the tree height for trees in
stands with canopy cover less than 35%, 16% of tree height for
trees in stands with moderately closed canopy cover ranging be-
tween 35% and 65%, and 11% of tree height for trees in stands
with closed canopy cover greater than 65% (Rowell, 2010, Per-
sonal communication). Once a tree’s location and CW are esti-
mated, a square search window of 2 � CW m centered at the
tree location was used to estimate the tree’s crown base height
(CBH). The tree’s CBH was then estimated as the mean height
of all CHM points inside the search window divided by the stan-
dard deviation of the CHM point heights (Rowell, 2010, personal
communication). Individual tree diameter at breast height
(DBH) were estimated using the following log-linear model
(n = 1555, R2 = 0.76, error = 7.6%) (Rowell et al., 2009).

ln DBH ¼ 1:732þ ð0:041�HTÞ þ ð0:798� RHÞ � ð0:007� SDÞ
ð1Þ

where HT is the height of the tree (m), RH is the relative height cal-
culated as the tree height divided by the mean height of dominant
and co-dominant trees in a 20 m � 20 m neighborhood, and SD is
stem density of dominant and co-dominant stems in the neighbor-
hood. Tree volumes were estimated using an equation from the
Northern Idaho/Inland Empire of the Forest Vegetation Simulation
(Keyser, 2008).

vol ¼ bf0:00171� ðd=2:54Þ2 �HTg þ f0:00171� ðd=2:54Þ
�HTgc � 0:02831 ð2Þ

where vol is the tree volume (m3), and d is the tree DBH (cm).

2.2. Individual tree fuel connectivity

To quantify fuel connections among individual trees in a stand,
we used logistic regression models developed to predict tree-level
crown fire initiation and propagation (Contreras et al., 2012). These
regression models predict tree-level fuel connectivity under severe
weather conditions defined by the 90th percentile of historical
observation data from the Seeley Lake (N47�1005800, W�113�2605000)
weather station located approximately 30 km north of LEF. Weath-
er and fuel moisture parameters used in the development of the
model were representative of late summer in the Northern Rocky
Mountains and surface fuels were described by parameters similar



Fig. 1. University of Montana’s Lubrecht Experimental Forest located in western Montana (Taken from Contreras et al., 2012.)

Table 1
LiDAR data acquisition parameters used for LEF.a

Date of acquisition June 2005
Elevation 1100–1900 m
LiDAR system Leica geosystems ALS50
Average flight height above surface 1900 m
Average flight speed 70.76 ms�1

Number of strips 54
Scan frequency 25.5
Laser pulse frequency 36,200 Hz
Scan angle ±35�
Sidelap 50%
Average swath width 1150 m
Average return density 0.44 m2

Average footprint 1 m2

a Taken from Suratno et al. (2009).
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to those representing fuel model 10 (Anderson, 1982). Please refer
to Contreras et al. (2012) for more details related to the develop-
ment of the regression models as well as weather and surface fire
inputs.
Crown fire initiation and propagation are predicted by the fol-
lowing logistic regression models:

PCFI ¼
egðxÞ

1þ egðxÞ ; gðxÞ

¼ 10:93897þ ð0:24285�HTÞ � ð2:84814� CBHÞ ð3Þ
PCFP ¼
egðxÞ

1þ egðxÞ ; gðxÞ

¼ �6:9064þ ð0:3194�HTÞ � ð3:2356� SPÞ þ ð69:4118

� CI1Þ ð4Þ

where PCFI is the probability that crown fire initiation will occur at a
given tree location, PCFP is the probability that fire will propagate
crown-to-crown from an ignited source tree representing the flam-
ing front to a target tree ahead of the flaming front. SP is tree spac-
ing measured as the distance (m) between the horizontal crown
projections (edge to edge) of the source and target tree. CI1 is a
modified distance-dependent competition index (Rouvinen and
Kuuluvainen, 1997) used as a proxy for size and proximity of the
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flaming front approaching the target tree. It is calculated as the sum
of the horizontal angles originating from the center of the target
tree and spanning the DBH of each tree forming the flaming front
(Eq. (5)). The model uses a flaming front area of 1.5 m � 10 m cen-
tered on the source tree to search for additional trees forming the
flaming front (Fig. 2).

CI1 ¼
Xn

i¼1

arctanðdi=distiÞ ð5Þ

where n is the number of trees forming the approaching flaming
front, di is the DBH (cm) of the ith tree forming the flaming front,
and disti is the horizontal distance (m) from the center of the ith
source tree to the center of the target.

To use these regression models deterministically, we applied
the same threshold probability of 0.5 used by Contreras et al.
(2012) because it adequately captured the binary nature of tree-
level fuel connections. In their study, simulation results showed
that trees either ignited burning crown fuels completely or did
not ignite. Similarly, when fire propagated from a source tree to
a target tree, the crown fuels of the target tree burned completely.
Therefore, when PCFI > 0.5, crown fire initiation is expected to occur
and the tree’s crown fuels are considered vertically connected with
surface fuels. Similarly, fire is expected to propagate from an ig-
nited source tree to the target tree when PCFP > 0.5, considering
both tree crown fuels horizontally connected.

2.3. Individual tree distance-dependent growth model

We used an individual tree distance-dependent growth model
developed to predict average annual basal area increment (BAI)
for three common tree species in LEF; Douglas-fir (Pseudotsuga
menziesii [Mirbel] Franco var. glauca [Beissn.] Franco), ponderosa
pine (Pinus ponderosa Dougl. ex Laws.), and western larch (Larix
occidentalis Nutt), (Contreras et al., 2011). The model is based on
neighboring tree data collected for 285 cored trees within an 11-
m plot radius. Tree cores were measured and average BAI
(cm2/year) was computed for a 10 year period from 1998 to 2007.

The individual tree growth model has the expression:

BAI ¼ exp½0:0624þ 0:773 lnðDBHÞ � 0:343CI2� ð6Þ

where CI2 is a distance-dependent competition index calculated
similar to CI1. It is calculated as the sum of the horizontal angles
originating from the subject tree center and spanning the DBH of
each neighbor tree inside the 11-m plot radius (Eq. (7)) (Rouvinen
and Kuuluvainen, 1997).
Fig. 2. Schematic of the flaming front area used to search additional source trees (dashed
the calculation of CI1 (b) to estimate fuel connectivity.
CI2 ¼
Xng

j¼1

ðdj=dÞ � arctanðdj=distjÞ ð7Þ

where dj is the DBH (cm) of the jth neighbor tree, distj is the hori-
zontal distance (m) from the subject tree center to jth neighbor tree
center, and ng is the number of neighbor trees inside the 11-m ra-
dius plot.

After the average annual BAI was estimated for a given tree (Eq.
(6)), expected future DBH was calculated. Future HT was then
obtained using a logistic height–diameter equation from the
Northern Idaho/Inland Empire of the Forest Vegetation Simulation
(Keyser, 2008).

HT ¼ 4:5� ef4:81519�7:29306=ððd=2:54Þþ1:0Þg� �
� 0:3048 ð8Þ

Expected future CW was estimated as 16% of tree height assum-
ing a future stand structure would have moderately closed canopy.
Future CBH was estimated assuming it increases proportionally to
HT. We made these assumptions because of the lack of future veg-
etation data necessary for projecting CHM over 20 years (Rowell,
2010, Personal communication).

2.4. Individual tree timber harvesting cost

We used a computerized model developed to estimate skidding
costs of individual trees for ground-based harvesting operations
(Contreras and Chung, 2011). The model considers size and spatial
distribution of individual cut-trees and detailed terrain informa-
tion obtained from a LiDAR-derived stem map and DEM, respec-
tively. First, the model uses a log-bunching algorithm to identify
the location and volume of log-piles. A cable skidder operation,
which collects nearby cut-trees within a maximum winching ra-
dius (MWR) through a cable winch, is simulated to complete a full
load close to a target loading capacity (TLC) and skid the load to an
extraction point (landing or road side). The log-bunching algorithm
begins with sorting all cut-trees based on their slope distance from
the extraction point. The algorithm selects the closest cut-tree as
the first log-pile location, and all cut-trees within the MWR from
the log-pile with a combined volume lower than the TLC are as-
signed to the first log-pile. Then, the algorithm selects the next
closest non-assigned cut-tree as the second log-pile location, and
assigns nearby cut-trees within the MWR to the second log-pile.
The process continues until all cut-trees have been assigned to a
log-pile. The model then determines least-cost routes connecting
each log-pile to the extraction point by developing a skid-trail net-
work formed by vertices and edges. Each vertex, which represents
lines) showing spacing between a source tree and a target tree (solid lines) (a) and



Fig. 3. Example of a fuel connectivity network formed by 43 vertices and nine
clusters of connected trees.
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the center of a DEM cell evenly spaced at a 5-m interval, is con-
nected to its eight adjacent vertices. Edges represent the connec-
tion (skid-trail links) between a vertex and its adjacent
neighboring vertices. The model then creates feasible skid-trail
links over areas with gentle to moderate slope (i.e., lower than
35%). To avoid damage to remaining trees, no skid-trail links are al-
lowed within 1.5 m of each leave-tree.

After the skid-trail network has been created, the model deter-
mines the skidding cycle time associated with each link based on
its distance and slope, using the skidding cycle time models pre-
sented in (Contreras and Chung, 2007).

CTds ¼ 3:9537þ ð0:0215� DÞ ð9Þ

CTus ¼ 3:9537þ ð0:0258� DÞ ð10Þ

where CTds is the cycle time (min) for downhill skidding, CTus is the
cycle time (min) for uphill skidding, and D is the slope distance of
the skid-trail link (m).

Skidding cycle time is used as an edge attribute to formulate a
network problem. The model uses the Dijkstra’s shortest path algo-
rithm (Dijkstra, 1959) to find least cycle time routes connecting
each log-pile to the extraction point. The skidding cost for a given
ith log-pile (PSCi) is estimated using the following equation:

PSCi ¼
CTi

60

� �
� RR ð11Þ

where CTi is the least skidding cycle time (min) for a round trip be-
tween the extraction point and the ith log-pile location, and RR is
the rental rate of the skidder ($/h). Skidding cost of individual trees
is estimated by prorating the log-pile’s skidding cost based on the
volume ratio of the individual tree to the entire log-pile (Eq. (12)).
Thus, bigger cut-trees entail a larger skidding cost than smaller
cut-trees in the same pile.

TSCj ¼
volj � PSCi

Pvoli

� �
ð12Þ

where TSCj is the skidding cost ($) of the jth individual cut-tree, volj

is the volume (m3) of the jth cut-tree, PSCi is the skidding cost ($) of
the ith log-pile containing cut-tree j, and Pvoli is the volume (m3) of
the ith log-pile.

2.5. Individual tree removal optimization

To ensure the effectiveness and efficiency of thinning treatment
on reducing crown fire potential over time, we considered a period
of 20 years and applied the tree-level growth model to estimate fu-
ture tree sizes. We used the crown fire initiation and propagation
models to predict current fuel connections among existing tree
and future fuel connections among remaining trees after treat-
ment. The selection of individual cut-trees is optimized based on
current fuel connections among all trees, expected future fuel con-
nections after removing the cut-trees and growing the remaining
leave-trees for 20 years, and the cost associated with skidding
the selected cut-trees.

The tree removal optimization problem is formulated as follows:

Minimize Z ¼
XNT

i¼1

ðTSCi � f1� IigÞ
" #

þ
XNT

i¼1

ðCHFCi þ CVFCi þ FHFCi þ FVFCiÞ � Ii½ �
" #

ð13Þ

subject to
XNT

i¼1

f1� Iig ¼ TCT ð14Þ
where Ii is a binary variable indicating whether the ith tree remains
(Ii = 1, leave-tree) or is removed from the stand (Ii = 0, cut-tree),
CHFCi, and CVFCi are coefficients representing the number of cur-
rent horizontal and vertical fuel connections associated with the
ith tree, FHFCi and FVFCi are coefficients representing the number
of future horizontal and vertical fuel connections associated with
the ith tree, TSCi is the skidding cost ($) associated with skidding
the ith tree, and NT is the total number of trees. The objective func-
tion (Eq. (13)) represents an index number set to minimize the skid-
ding cost (first term) and number of fuel connections (second term).
Due to the lack of data relating expected economic losses and tree-
level fuel connectivity in the application presented in this study,
skidding cost and fuel connections have the same weight in the
objective function giving the same importance to both factors. More
research is needed to determine the relative importance of each fac-
tor under different management scenarios and evaluate the effects
of these weights of the optimal selection of trees to remove. Eq. (14)
is a constraint ensuring that the target thinning intensity in terms of
the number of trees is met, where TCT is the target number of cut-
trees.

We used a network to model fuel connectivity and solve the
tree removal optimization problem. A fuel connectivity network
consists of a set of vertices v, which represent tree locations, and
a set of edges E representing fuel connections between pairs of
adjacent trees. Our approach starts with applying the crown fire
initiation and propagation regression models to estimate current
fuel connections among trees and form the fuel connectivity net-
work. Clusters of connected trees are identified in the fuel connec-
tivity network and characterized in terms of number of trees
forming each cluster (q). Fig. 3 shows an example of a fuel connec-
tivity network formed by 43 trees, resulting in nine clusters of con-
nected trees with sizes ranging from 1 to 16. Each cluster
represents the extent fire would propagate and the number of trees
that would burn after fire reaches crown fuels through vertical fuel
connections.

For the purpose of reducing crown fire potential by breaking
fuel connectivity throughout a forest stand, we determined the
minimal combination of cut-trees required to remove all horizon-
tal fuel connections within each cluster of connected trees. This
was achieved by using an algorithm to identify a minimal vertex
cover (MVC) in a graph G. A vertex cover C of G is a set of vertices
such that for each edge {u, v} in G, at least one of its vertices u or v
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is in C. Given a vertex cover C of G and a vertex v in G, v is remov-
able if the set C � {v} is still a vertex cover of G. A MVC is then a
vertex cover with no removable vertices. In our context, a MVC
represents the minimal combination of cut-trees required to re-
move all fuel connections.

2.5.1. MVC algorithm
Given a graph G, all vertices are labeled consecutively from

1,2, . . . ,p. Starting with the first vertex (i = 1), the vertex cover is
initialized as Ci = v � {i}. If Ci has no more removable vertices, we
stop and store the size u(Ci) of the vertex cover Ci. Otherwise for
each removable vertex v of Ci, we find the number w(Ci � {v}) of
additional removable vertices of the vertex cover Ci � {v}. We de-
note the vmax as the removable vertex such that w(Ci � {v}) is max-
imum, and then update the vertex cover as Ci = Ci � {vmax}. When
multiple vertices with the same w(Ci � {v}) value exist, we arbi-
trarily select the first one. Thereafter, vertex vmax is selected and
removed from Ci (Ci = Ci � {vmax}). The process of removing vmax

vertices and updating the vertex cover Ci is repeated until no more
removable vertices exit. When the process is finished, the MVC ini-
tialized with Ci is obtained. Now we move to the next vertex
(i = i + 1) and initialize the vertex cover Ci = v � {i} and obtain the
associated MVC. We stop when a MVC is obtained for all vertices
in G. All resulting MVC are stored and ordered by ascending sizes
u(Ci). The MVC with minimum size is selected as the final MVC
of G. Table 2 shows the steps required to obtain the MVC initialized
with the first vertex in a graph with nine vertices.

The total number of cut-trees required to remove all fuel con-
nections (RCT) is then determined by summing up the size of the
final MVC for each cluster

RCT ¼
Xx
i¼1

ui ð15Þ

where x is total number of clusters in the fuel connectivity
network.

Three cases arise when evaluating the thinning intensity con-
straint (Eq. (14)). In case I, the target number of cut-trees is equal
to the number of trees required to remove all fuel connections
(RCT = TCT). There are a large number of combinations of cut-trees
that remove all fuel connections because most clusters have multi-
ple final MVC of same size. We select final MVC based on their
proximity to the extraction point, measured as the average slope
distance (AD_MVC) from all vertices (cut-tree locations) forming
the MVC to the extraction point. The jth final MVC of the kth cluster
in the fuel connectivity network is then selected based on a ran-
dom number and a selection probability calculated by

SP MVCjk ¼
AD MVC�1

jPcn
i¼1AD MVC�1

i

ð16Þ

where SP_MVCjk is the selection probability that the jth final MVC of
the kth cluster is selected, and cn is the number of final MVC of the
same size associated to the kth cluster in the fuel connectivity
network.

Case II represents the case where the target number of cut-trees
is smaller than the number of trees required to remove all fuel con-
nections (TCT < RCT). In this case, additional leave-trees (ALT) need
to remain to meet the thinning intensity constrain. The number of
additional leave-trees is calculated (ALT = RCT � TCT), and leave-
trees are selected based on both their proximity to the extraction
point and the number of remaining fuel connections. After select-
ing a final MVC for each cluster in the fuel connectivity network
(Eq. (16)), additional leave-trees are selected based on the selection
probability calculated as follows:
SP LTj ¼
ð1� SAD TjÞ þ SFC TjPALT
i¼1ð1� SAD TiÞ þ SFC Ti

8j 2 P ð17Þ

where SP_LTj is the selection probability that the jth tree is selected
to remain, SAD_Tj is the standardized slope distance from the jth
tree to the extraction point, SFC_Tj is the standardized number of
fuel connections between the jth tree and other already selected
leave-trees, and P is the set of trees forming the selected final
MVC for all clusters. Standardized values were used to reduce slope
distance and the number of fuel connections to the same scale and
give equal weight to both factors when calculating the tree selec-
tion probability.

For case III, the target number of cut-trees is larger than the
number of trees required to remove all fuel connections
(RCT < TCT). Here, additional cut-trees need to be selected for re-
moval. The number of additional cut-trees is calculated
(ACT = TCT � RCT), and cut-trees are selected based on their prox-
imity to the extraction point

SP CTj ¼
AD T�1

jPACT
i¼1 AD T�1

i

8j 2 S ð18Þ

where SP_CTj is the selection probability that the jth tree is selected
to be removed, AD_Tj is the slope distance from the jth tree to the
extraction point, and S is the set of trees not belonging to the se-
lected MVC for any cluster in the fuel connectivity network (origi-
nally selected leave-trees).

As mentioned above, our computerized approach starts with
applying the crown fire initiation and propagation regression mod-
els to estimate current tree-level fuel connections among all trees.
Then, the number of fuel connections for each tree and the size of
clusters of connected trees are calculated. The approach builds a
solution by (i) randomly selecting a MVC for each cluster as well
as additional cut- or leave-trees (depending on the constrain case)
based on the number of fuel connections and proximity to the
extraction point (Eqs. (16)–(18)), (ii) estimating the skidding cost
of selected cut-tree the number of fuel connections among selected
leave-trees, (iii) applying the individual tree growth model to esti-
mate future tree sizes, and (iv) applying the crown fire initiation
and propagation models to estimate future tree-level fuel connec-
tions among selected leave-trees. The solution is then evaluated
and the objective function value (Eq. (13)) is stored. For next solu-
tion, a different random combination of cut-and leave-trees is gen-
erated, and the objective function is evaluated and compared with
the previous solution. If the current solution is better than the pre-
vious one (lower total skidding cost and lower number of current
and future fuel connections), it is stored and saved as the best solu-
tion found. Otherwise, the current solution is ignored and another
solution is generated. This iterative process of generating and eval-
uating alternative solutions (combinations of cut- and leave-trees)
continues until a stopping criterion is met. We used a maximum
number of solutions, Smax, to stop the process in a reasonable
amount of time. When the process stops the best solution found
is reported. For the model application presented in this study, we
set Smax at 15,000 solutions.

2.6. Model application – a case study

The study area for this investigation is a forest stand in the LEF
(Fig. 4). The stand is 4.6 ha in size with elevations ranging from
1270 to 1310 m, on a north-facing aspect, and an average slope
of 13.5% (0.0–36.3% slope range). Douglas-fir is the dominant spe-
cies with a small amount of ponderosa pine trees. The stand has
established under- and middle-story vegetation creating continu-
ous canopy fuels from the ground to the top of the canopy, result-
ing from logging in the mid-1940s and thinning in the mid-1970s.



Table 2
Steps required to obtain the MVC initialized with vertex number one.

Removable vertex v of C1 Additional removable vertices of C1 � {v} w(C1 � {v})

Step 1: We initialize the vertex cover as C1 = v � {1} = {2, 3, 4, 5, 6, 7, 8, 9}, size u(C1) = 8
3 5, 7, 8, 9 4
5 3, 6, 7, 9 4
6 5, 7, 8 3
7 3, 5, 6, 9 4
8 3, 6 2
9 3, 5, 7 3

Maximum w(C1 � {v}) = 4 for v = 3, 5, 7. We arbitrarily remove vertex 3 from C1

Step 2: Vertex cover C1 = {2, 4, 5, 6, 7, 8, 9}, size u(C1) = 7
5 7, 9 2
7 5, 9 2
8 None 0
9 5, 7 2

Maximum w(C1 � {v}) = 2 for v = 5, 7, 9. We arbitrarily remove vertex 5 from C1

Step 3: Vertex cover C1 = {2, 4, 6, 7, 8, 9}, size u(C1) = 6
7 9 1
9 7 1

Maximum w(C1 � {v}) = 1 for v = 7, 9. We arbitrarily remove vertex 7 from C1

Step 4: Vertex cover C1 = {2, 4, 6, 8, 9}, size u(C1) = 5
9 None 0

Maximum w(C1 � {v}) = 0 for v = 9. We remove vertex 9 from C1

Step 5: Vertex cover C1 = {2, 4, 6, 8}, size u(C1) = 4
None – –

Step 6: We stop and obtain a MVC, C1 of size u(C1) = 4
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The LiDAR stem detection algorithm identified over 11,000 trees in
the stand, most of which are small, suppressed trees. For the pur-
pose of reducing crown fire potential, we first considered an initial
thinning prescription that cuts, piles, and burns small trees with
DBH less than 12.5 cm (5 in.). Fig. 4b presents the LIDAR-derived
stem map showing the remaining 2645 individual tress in the
study area after the initial thinning prescription was applied.
Cut-tree selection was then optimized for the remaining trees to
meet a target tree density of 300 leave-trees per ha or
TCT = 1265 trees.
3. Results and discussion

Based on the current LiDAR-derived tree locations and attri-
butes, fuel connectivity models predicted tree-level vertical fuel
connections with surface fuels and horizontal fuel connections be-
tween adjacent trees (Table 3). Vertical fuel connections, repre-
senting the ignition of crown fuels, were predicted at 536 tree
locations, representing over 20% of tree in the stands. Crown fire
propagation models predicted over 27,500 horizontal fuel connec-



Fig. 4. LiDAR-derived digital elevation model (a) and stem map (b) for the 4.6-ha study area in LEF. Figure b was taken from Contreras et al. (2012).

226 M.A. Contreras, W. Chung / Forest Ecology and Management 289 (2013) 219–233
tions between adjacent pairs of trees, mainly due to the relatively
larger number of trees and dense stand structure. These horizontal
fuel connections resulted in a fuel connectivity network formed by
38 clusters of connected trees (Table 3). In average, clusters are
formed by about 70 connected trees, and crown fuels of each tree
are connected to an average of about 10 adjacent trees. Most clus-
ters are formed by less than 15 connected trees. However, the sin-
gle largest cluster connects over 92% of trees in the stand (Fig. 5).
These results indicate that, after reaching crown fuels through ver-
tical fuel connections, fire can propagate throughout the stand
burning most trees in the study area. The large number of fuel con-
nections, average connections per tree, and average connections
per cluster also indicate a relatively high crown fire potential under
the current stand structure.

The MVC algorithm was applied to the cluster forming the fuel
connectivity network to identify all possible final MVC associated
with each cluster. Adding the size of the final MVC for each cluster
resulted in a total of 1996 cut-trees were required to remove all
fuel connections (RCT) in the study area. This would results in only
649 leave-trees corresponding to a thinning intensity of over 75%
of total number of trees. Consequently, as RCT is larger than the
TCT (1996 vs. 1265 – constraint case II), 731 additional leave-trees
were required to be selected to meet the thinning intensity con-
straint of 300 trees per ha.

For each solution, the computerized approach randomly se-
lected MVC for each cluster (Eq. (16)) and additional leave-trees
(Eq. (17)) to generate an alternative combination of cut- and
leave-trees. Objective function value was evaluated by quantifying
tree-level fuel connections among selected leave-trees, skidding
costs of selected cut-trees, and future tree-level fuel connections
among selected leave-trees after applying the growth models for
a period of 20 years. The best solution found by the computerized
approach was found after generating about 12,000 alternative
combinations of cut- and leave-trees. Fig. 6 shows the improve-
ment of the objective function values over the random search opti-
mization process. The best solution found has an objective function
value of 13,706; consisting of 4366 remaining fuel connections
(315 vertical and 4051 horizontal), 5837 future fuel connections
(189 and 5648 vertical and horizontal, respectively) among the se-
lected leave-trees, and a skidding cost of 3503 associated with the
selected cut-trees. As mentioned above, the objective function va-
lue represents an index number combining fuel connections and
skidding cost, with equal weight to both factors.

Fuel connectivity throughout the study area was largely re-
duced by removing about 48% of the total number of trees in the
study area (1265 cut-trees). The best solution found by computer-
ized approach identified a combination of cut-trees that reduced
fuel connectivity by almost 85%, from over 28,000 fuel connections
under current stand conditions to about 4365 fuel connections
after treatment (Fig. 7). Also, the number of trees expected to ignite
decreased by about 41% from 536 to 315 trees. The number of clus-
ters of connected trees increased from 38 to 173 indicating a large
increase in fuel discontinuity. The average number of tree forming
a cluster was lowered from almost 70, under current conditions, to
about 8 after treatment, and the average fuel connections per tree
decreased from over 10 to about 4 (see Table 3). Similarly to the
current conditions before treatment, most clusters are formed by
less than 15 connected trees. However, 5% of clusters now connect
about 72% of leave-trees after treatment and the largest cluster
connects only about 59% of leave-trees.

The individual distance-dependent tree growth model was ap-
plied to the selected leave-trees based on tree locations and sizes
to estimate tree growth under the new stand conditions after the
thinning treatment. Average periodic increment in DBH of leave-
trees was 5.08 cm for a 20-year period (Table 4). Based on the esti-
mated future DBHs and the height–diameter relationship (Eq. (8)),



Table 3
Tree-level fuel connectivity results from the logistic regression models for trees under the current stand condition and the projected future condition after a 20-year growing
period.

Stand condition Crown fire initiation Crown fire propagation

Number of
trees ignited

Percentage of
trees ignited

Horizontal fuel
connections

Number of
connected clusters

Average connections
per cluster

Average
connection per tree

Average trees
per cluster

Current 536 20.26 27,755 38 730.39 10.49 69.60
After thinning 315 22.68 4051 173 23.41 2.94 7.98
Future 189 17.68 5648 56 100.86 4.09 24.64

Fig. 5. Location, size, and summary statistics of clusters formed by predicted tree-level fuel connections under the current conditions in the study area.

Fig. 6. Change in the objective function value over the 15,000-solution random
search optimization process (the best solution was found at solution 12,023).
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future tree HT were estimated to increase by an average of 34%
(e.g., 5.27 m). As CBH was assumed to increase in the same propor-
tion as tree HT, the average future CBH was also estimated to in-
crease by about 34%. Lastly, CW was expected to increase by an
average of 0.47 m (Table 4).

As expected, the total number of tree-level fuel connections
among the selected leave-trees was predicted to increase over
the 20-year period due to tree growth. The number of vertical fuel
connections was reduced from 315 after treatment to 189 under
future stand conditions (see Table 3). This result is due to our
assumption of growing CBH over time, but in practice the gap be-
tween surface and crown fuels might even decrease due to regen-
eration, which was not considered in our analysis because of the
lack of more comprehensive forest dynamic models. The number
of horizontal fuel connections rose by about 39%, from 4015 under
stand conditions after treatment to 5648 under future stand condi-
tions (see Table 3), as a result of tree growth and reduced spacing
between adjacent pairs of leave-trees. The reduction in the number
of clusters of connected trees (173 vs. 56), the increase in the aver-
age cluster size (from about 8 to almost 25), and average fuel con-
nections per tree (from 2.94 to 4.09) are also indicators of an
increased fuel connectivity under future stand conditions (see Ta-
ble 3). Fig. 8 shows the location and sizes of clusters formed by fu-
ture horizontal fuel connections among leave-trees. Although
future fuel connectivity increased throughout the study area com-



Fig. 7. Leave-tree locations and summary statistics of clusters formed by remaining fuel connections found by the best solution.

Table 4
Current and future tree attributes predicted using the individual tree growth model over a 20 year period.

Time Tree attribute Range of values Periodic increment over 20 years

Min. 1st Qu. Median Mean 3rd Qu. Max.

Current HT 8.79 12.23 14.96 15.51 17.93 33.05 5.27 m (33.98%)
Future 15.77 18.41 20.31 20.78 22.68 35.79
Current DBH 12.70 15.46 19.40 21.56 25.18 60.85 5.08 cm (23.53%)
Future 16.76 20.86 24.48 26.64 30.09 66.00
Current CBH 0.00 5.33 6.99 7.06 9.03 15.08 2.48 m (34.18%)
Future 0.11 7.47 10.45 9.54 11.81 19.00
Current CW 2.34 3.67 4.49 4.65 5.38 9.91 0.47 m (9.92%)
Future 2.64 4.04 4.94 5.12 5.92 10.90
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pared with the stand conditions right after thinning, crown fire po-
tential remains still relatively low after 20 years. The number of fu-
ture tree-level fuel connections is about 20%, the average cluster
size is one third, and the average connections per tree is about
40% compared with the stand conditions before thinning.

The individual tree skidding cost model identified log-pile loca-
tions and the optimal skid-trail network connecting each log-pile
to the extraction point that ensures the cost efficiency of the thin-
ning treatment (Fig. 9). Based on the location and sizes of the 1245
cut-trees selected by the computerized approach (Fig. 9a), the log-
bunching algorithm identified 275 log-piles (Fig. 9b). A skid-trail
network composed of almost 3450 feasible skid-trail links was cre-
ated over the study area based on; terrain conditions (represented
by the LiDAR-derived DEM), and the location of the 275 log-piles
and the remaining 1380 leave-trees (Fig. 9c). The Dijkstra’s short-
est path algorithm identified the optimal skid-trail network that
minimizes the skidding cost from each log-pile to the extraction
point was developed, which is formed by about 1080 ski-trail links.
Fig. 9d shows the optimal skid-trail network with traffic level on
each skid-trail link in terms of the number of passes (turns). The
resulting average skidding cost per log-pile is about $12.5 and
the average skidding distance from a log-pile to the exit point is
about 224 m (Table 5). Fig. 10a shows the range of skidding costs
per log-pile. Log-piles located farther away from the exit point
have larger skidding costs. Skidding costs of individual cut-trees
ranged from $0.19 to about $17 with an average of $2.8 (Table 5).
Cut-trees with large skidding costs can be found throughout the
study area because cost is a function of both tree size and distance
from the extraction point (Fig. 10b).

3.1. Model validation

As mentioned above, the best tree removal selection found by
the computerized approach appears to largely reduce crown fire
potential as measured by the tree-level fuel connectivity. However,
it is difficult to ensure solution quality due to the lack of efficient
optimization algorithms (i.e., mixed-integer programming) capa-
ble of solving the tree removal problem to optimality within a rea-
sonable amount of computing time. With the purpose of
benchmarking solution quality, we compared the best solution



Fig. 8. Leave-tree locations and summary statistics of clusters formed by future fuel connections after a 20-year growth period.
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found with two alternative combinations of cut- and leave-trees
under the same thinning intensity (1380 leave-trees and 1265
cut-trees). The first alternative combination consists of cut-trees
selected manually simulating the marking process carried out by
markers on the ground based on spacing between trees and tree
sizes. During the manual selection of cut-trees, we visually identi-
fied dense groups of trees on the stem map (Fig. 4b). Within these
dense groups of trees, the tree with largest DBH was selected as a
leave-tree and remove (mark as cut-trees) all smaller trees within
a 2.5 m radius. The process of removing trees (selecting cut-trees)
continued until the target thinning intensity was met. The second
alternative combination selected cut- and leave randomly. In this
random combination a given leave-tree was selected by (i) index-
ing all 2645 trees in the stand, (ii) generating a random number
from 1 to 2645, and (iii) selecting the tree indexed with the se-
lected random number as a leave-tree. This combination of random
leave-trees was completed when 1380 distinct leave-trees were
selected. For each of these two alternative selections of cut- and
leave-trees, we evaluated the objective function value by estimat-
ing the (i) number of tree-level fuel connections between adjacent
pairs of leave-trees after treatment and under future stand condi-
tions and (ii) skidding costs associated with the selected cut-trees.
The manual and random cut- and leave-tree selection resulted in
objective function values about 5% and 34% higher than the objec-
tive function value of the best solution found by the computerized
approach, respectively (Table 6).

Skidding costs of the optimal solution (computerized approach)
and two alternative solutions (random and manual) are within 5%,
but the number of remaining and future fuel tree-level fuel con-
nections varied widely among solutions. The manual solution has
a slightly smaller skidding cost and a slightly larger number of
remaining fuel connections than the optimal solution. However,
the manual solution resulted in more than 450 additional future
fuel connections compared with the optimal solution. This indi-
cates that, although a manual selection of cut- and leave-trees
could produce similar results to the optimized tree removal, the
manual selection might inefficiently evaluate the temporal effects
of tree selection for reducing crown fire potential over time. On the
other hand, the random tree selection resulted in a much larger
number of remaining and future tree-level fuel connections (see
Table 6), which shows a large variability in tree-level fuel connec-
tivity among alternative selections of trees. Our approach, besides
optimizing the cut- and leave-tree selection, provides a more con-
sistent and objective method to evaluate alternative cut-tree pat-
terns and improves the efficiency of thinning treatments for
reducing crown fire potential over time. Lastly, identifying selected
individual trees is likely to be more time consuming when imple-
menting the optimal or random tree selection, thus, tree-marking
is likely to be more productive when implementing the manual
tree selection method. Future comparisons should also consider
the practical aspects of tree-marking on the ground and evaluate
the cost efficiency of implementing model results.

Our computerized approach to optimize the selection of tree re-
moval can efficiently break fuel connectivity throughout a forest
stand to reduce crown fire potential. However, the results of the
computerized approach depend heavily on the accuracy of input
data such as tree locations, as well as current and estimated future
tree dimensions. There are several ways to acquire tree locations
varying from traditional field measurements and GPS devises to
advanced remote sensing and GIS technologies such as high-reso-
lution aerial photos (Hirschmugl et al., 2007), multispectral imag-
ing (Popescu and Wynne, 2004), and LIDAR (Maltamo et al., 2006).
The algorithm used to obtain LiDAR-derived stem maps by NCLFA
researchers provided stem detection accuracies of approximately
53% when considering all tree classes at LEF (Suratno et al.,
2009). However, stem detection accuracy increases significantly
on dominant trees. In similar forest conditions to those of our
study area, the stem detection algorithm provided an accuracy of
about 90% when considering only dominant trees (Rowell et al.,
2006). In this study, we considered only dominant trees with



Fig. 9. Cut-tree locations (a) and log-piles (b), feasible skid-trail links (c), and optimal skid-trail network (d) for the selected cut-trees in the best solution found.
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DBH > 12.7 cm, thus we expect the stem map used for our study
has a high stem detection accuracy level.

Appropriate tree-level growth models are also required to accu-
rately estimate future tree dimensions and consequently tree-level
fuel connectivity. We predicted future tree diameters using a basal
area increment model parameterized for species commonly found
at LEF. However, we assumed that CBH and CW growth proportion-
ally to HT which was derived from DBH. These assumptions may



Table 6
Comparisons on solution quality between the best tree selection found by the
computerized approach and two alternative selections of cut- and leave-trees.

Tree selection
method

Objective
function
value

Skidding
cost ($)

Remaining tree-
level fuel
connections

Future tree-
level fuel
connections

Computerized
model

13,706 3503 4366 5837

Manual 14,327 3483 4548 6296
Random 18,379 3654 6599 8126

Table 5
Statistics on individual tree skidding costs estimated for the selected cut-trees in the
study area.

Total Log-piles

Total skidding cost ($) 3503 Min. number of trees per pile 1.00
Number of log-piles 275 Aver. number of trees per

pile
4.52

Number of cut-trees 1265 Max. number of trees per pile 16.00
Harvestable volume (m3) 36.6 Min. pile volume (m3) 0.05

Aver. pile volume (m3) 1.31
Cut-trees Max. pile volume (m3) 2.79

Minimum tree volume
(m3)

0.05 Min. pile distance (m) 14.21

Average tree volume (m3) 0.29 Aver. pile distance (m) 224.37
Maximum tree volume

(m3)
3.02 Max. pile distance (m) 391.38

Minimum tree cost ($) 0.19 Min. pile cost ($) 6.05
Average tree cost ($) 2.77 Aver. pile cost ($) 12.52
Maximum tree cost ($) 17.27 Max. pile cost ($) 17.27

M.A. Contreras, W. Chung / Forest Ecology and Management 289 (2013) 219–233 231
introduce uncertainty to the accuracy of projected tree sizes and
future tree-level fuel connections. Underestimation of future CBH
could result in overestimating the number of ignitable trees. Sim-
ilarly, underestimating future CW could result in underestimation
of the number of fuel connections among adjacent pairs of trees.
4. Conclusions

Our computerized approach for optimizing individual tree re-
moval provides an analytical method to evaluate spatial and tem-
Fig. 10. Distribution of skidding costs over the study area showi
poral effects of thinning treatments on reducing crown fire
potential within a stand, and thus can help forest managers devel-
op more effective and efficient thinning prescriptions that are site-
specific to given stands. Our approach considers spatial variability
of fuels within a stand, the effects of cut-tree selection on future
tree growth and stand conditions, and skidding costs of individual
trees into the development of thinning prescriptions.

The application results show that crown fire potential can be
effectively reduced over time while ensuring the cost efficiency
of thinning treatments. Fuel connectivity throughout forest stands
can be largely reduced in terms of the number of tree-level fuel
connections as well as number of clusters of connected trees, aver-
age number of trees forming a cluster, and average fuel connec-
tions per tree. By selecting the combination of cut-trees that
removes the most tree-level fuel connections, our approach can re-
duce fuel connectivity over time more effectively than commonly
used thinning practices. In addition to reducing crown fire poten-
tial, our approach can potentially be modified and used for other
ng cost per log-pile (a) and cost per individual cut-tree (b).
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forest management objectives. Tree growth can be included in the
objective function to increase timber production as well as reduc-
ing crown fire potential. Our approach can also be modified to de-
velop tree-level thinning prescriptions for increasing carbon
sequestration or improving wildlife habitat for given species upon
availability of tree level measures of carbon sequestration and
wildlife habitat quality.

Further research needs to be conducted to enhance the per-
formance of the computerized approach and evaluate the feasi-
bility of implementing the results on the ground. Widely used
heuristic optimization techniques such as simulating annealing
(Kirkpatrick et al., 1983), tabu search (Glover, 1989, 1990), and
ant colony (Dorigo et al., 1996) can be applied to solve the opti-
mal tree removal selection problem and compared with the cur-
rent random search optimization technique employed in this
study. As with all heuristic optimization techniques, solution
optimality is not guaranteed. A large number of solutions should
then be evaluated to ensure a high-quality solution, although it
requires significant computation time. Additional techniques
such as parallel programming (Pacheco, 2011) and extreme
value theory (Lindgren and Rootzén, 1987; Alvarado et al.,
1998) could be implemented into the computerized approach
to improve running time and determine the minimum number
of solutions required to ensure a desired level of solution quality,
respectively.

Despite the imitations, our approach has the potential to enable
forest managers to customize site-specific thinning guidelines for
individual stands and implement cost-efficient fuel treatments to
reduce the risk of high-intensity wildfires. Given that high resolu-
tion vegetation mapping technology such as LiDAR is becoming
increasingly available, our approach can be a useful tool when
thinning is applied to restore overstocked forested lands in need
of fuel treatments.
Box 1 Cautionary remark.

In this study we applied the regressions models devel-

oped by Contreras et al. (2012) to quantify tree-level fuel

connectivity for an entire stand based on the wildland–

urban interface Fire Dynamics Simulator (WFDS) as

described by Mell et al. (2007). WFDS has received limited

field and laboratory evaluation to date as to its validity in

simulating surface and crown fire behavior in conifer for-

est stands. However, the regression models developed by

Contreras et al. (2012) were not used to predict tree-level

fire behavior per se. Instead they were used as a relative

measure to evaluate and compare alternative combina-

tions of cut-trees and select the combination that resulted

in the least number of remaining tree-level fuel connec-

tions after thinning.
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