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Abstract: Forest transportation planning problems (FTPP) have evolved from considering only the financial aspects of
timber management to more holistic problems that also consider the environmental impacts of roads. These additional re-
quirements have introduced side constraints, making FTPP larger and more complex. Mixed-integer programming (MIP)
has been used to solve FTPP, but its application has been limited by the difficulty of solving large, real-world problems
within a reasonable time. To overcome this limitation of MIP, we applied the ant colony optimization (ACO) metaheuristic
to develop an ACO-based heuristic algorithm that efficiently solves large and complex forest transportation problems with
side constraints. Three hypothetical FTPP were created to test the performance of the ACO algorithm. The environmental
impact of forest roads represented by sediment yields was incorporated into the economic analysis of roads as a side con-
straint. Four different levels of sediment constraints were analyzed for each problem. The solutions from the ACO algo-
rithm were compared with those obtained from a commercially available MIP solver. The ACO solutions were equal to or
slightly worse than the MIP solution, but the ACO algorithm took only a fraction of the computation time that was re-
quired by the MIP solver.

Résumé : Les problèmes de planification du transport forestier (PPTF) ont évolué de la prise en considération uniquement
des aspects financiers de la gestion forestière vers une approche plus globale qui tient compte aussi de l’effet des routes
sur l’environnement. Ces exigences additionnelles ont amené des contraintes supplémentaires qui rendent les PPTF plus
volumineux et plus complexes. La programmation linéaire mixte (PLM) a été utilisée pour résoudre les PPTF, mais ses ap-
plications ont été limitées par la difficulté à résoudre des problèmes du monde réel de grandes tailles, à l’intérieur d’un dé-
lai raisonnable. Pour surmonter cette faiblesse de la PLM, nous avons appliqué la métaheuristique de la colonie de fourmis
pour développer un algorithme qui résout de façon efficace les PPTF complexes et de grandes tailles avec des contraintes
complémentaires. Trois PPTF hypothétiques ont été créés pour tester la performance de l’algorithme par colonie de four-
mis (ACF). L’impact environnemental des routes forestières, exprimé par la production de sédiments, a été incorporé dans
l’analyse économique des routes comme une contrainte complémentaire. Quatre niveaux différents des contraintes de sédi-
mentation ont été analysés pour chaque problème. Les solutions obtenues avec l’ACF ont été comparées à celles obtenues
avec un résolveur PLM commercial. Les solutions de l’ACF étaient équivalentes ou légèrement pires que la solution de la
PLM, mais elles ne nécessitaient qu’une fraction du temps de calcul requis par le résolveur PLM.

[Traduit par la Rédaction]

Introduction

Problems related to forest transportation planning have
long been an important concern because timber transporta-
tion is one of the most expensive activities in forest opera-
tions (Greulich 2003). Traditionally, the goal of forest
transportation planning problems (FTPP) has been to find
the road network that minimizes both log hauling and road
construction costs for timber management.

FTPP that contain both fixed (road construction) and vari-

able (log hauling) costs of timber transportation are a special
case of the fixed charge transportation problem (FCTP) (Ba-
linski 1961), which is known as a NP-hard (nondeterministic
polynomial-time hard) combinatorial optimization problem
(Maniezzo et al. 1998; Kowalski 2005). These transportation
problems have been solved optimally using exact algorithms
such as stage ranking and branch-and-bound methods used
in mixed-integer programming (MIP) (Adlakha and Kowal-
ski 2003). However, the application of these methods has
been restricted to small-scale problems because computation
time dramatically increases with problem size (Kowalski
2005). For even a medium-scale problem with hundreds to
thousands of edges, the computation time required by MIP
might be so large that the problem becomes unsolvable for
practical purposes (Adlakha and Kowalski 2003).

Several approximation algorithms, generally called heuris-
tics, have been developed to solve larger problems in a rea-
sonable time (Gottlieb and Paulmann 1998; Sun et al. 1998).
Although heuristic algorithms may not always provide opti-
mal solutions, they have been the focus of a large number of
researchers because of their high efficiency and capability of
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problem solving especially for large and complex problems
(Jones et al. 1991; Weintraub et al. 1994, 1995; Martell et
al. 1998; Falcão and Borges 2001; Zeki 2001; Sessions et
al. 2003; Olsson and Lohmander 2005).

The prorate algorithm (Schnelle 1977) and its variations is
one of the popular algorithms widely used in North America
to solve the fixed- and variable-cost FTPP. Based on the
shortest path algorithm (Dijkstra 1959), the prorate algo-
rithm finds the least-cost route from each entry node (timber
sale location) to the destination node (mill location) after
converting the fixed cost of a link to the variable cost using
the traffic volume over the link. Notable software programs
using this prorate algorithm with heuristic rules include
MINCOST (Schnelle 1977), NETCOST (Weintraub and
Dreyfus 1985), NETWORK II (Sessions 1985), and NET-
WORK 2000 (Chung and Sessions 2003). Although all of
these programs are able to solve large fixed- and variable-
cost transportation problems, none of them can consider
multiple objectives or side constraints based on other attrib-
utes of road links (i.e., limiting sediment yields, traffic vol-
umes, or open road length).

However, modern FTPP are driven not only by the finan-
cial aspects of timber management, but also by multiple uses
of roads, such as recreation, and their social and environ-
mental impacts on such things as water quality, wildlife,
and fish habitats. These environmental and social considera-
tions and requirements introduce side constraints to the
FTPP, making the problems much larger and more complex
than traditional cost minimization. NETWORK 2001
(Chung and Sessions 2001) was developed to solve
multiple-objective transportation-planning problems by com-
bining a k-shortest path algorithm with a simulated anneal-
ing heuristic. The algorithm uses a goal-programming
approach to evaluate solutions under multiple objectives,
but side constraints are not considered in this problem for-
mulation.

Except for the exact algorithms, such as MIP that has a
limitation on problem size, very few algorithms have been
applied to solving large fixed- and variable-cost FTPP con-
taining side constraints. One of the promising algorithms not
yet applied to FTPP is the ant colony optimization (ACO)
metaheuristic, an optimization technique introduced in 1991
(Dorigo et al. 1999). The objective of our study is to apply
the ACO metaheuristic concepts to develop an ACO-based
heuristic algorithm to efficiently solve complex FTPP with
side constraints. The ACO metaheuristic seems promising
for two main reasons: (i) the inspiring concept of ACO
metaheuristic is based on a transportation principle (it was
first intended to solve transportation problems that can be
modeled through networks, such as the traveling salesmen
problem) and FTPP with multiple attributes of road links
can be naturally modeled as a network problem, and (ii)
ACO has been proven to be effective in finding good solu-
tions to difficult problems as described below.

There have been successful applications of the ACO
metaheuristic to solve a number of different combinatorial
optimization problems. ACO algorithms are known to pro-
vide very good or the best proven results for solving many
important combinatorial optimization problems such as the
traveling salesman problem, quadratic assignment problem,
job-shop scheduling problem, among others. Other ACO ap-

plications have provided results that matched other well-
known algorithms (see Dorigo et al. 1999 and Dorigo and
Stützle 2003 for more details). In forest management plan-
ning, Zeng et al. (2007) applied the ACO to a forest harvest-
ing planning problem and found that the solution quality of
the ACO was similar to that of simulated annealing and ge-
netic algorithms.

The ACO metaheuristic has also been applied to solve
network-modeled transportation problems with fixed and
variable costs. For example, ACO algorithms have been de-
veloped to solve the well-known vehicle routing problem
and its variants (Bell and McMullen 2004; Rizzoli et al.
2004). The most common objective function for these prob-
lems is to minimize the number of vehicle routes required to
deliver products between depots and customers while mini-
mizing the vehicle travel time or distance. Another type of
network problems that have been solved using the ACO
metaheuristic is the facility location problem. The objective
function for these problems is set to find a subset of alterna-
tive facility locations (vertices) that minimize the combined
fixed cost of facilities and the variable cost of delivering
products from the selected facilities to the customer loca-
tions (Levanova 2005; McKendall and Shang 2006). Unlike
the above transportation problems, the objective of FTPP is
to find a subset of edges in a given network that connect
timber sale locations to destinations at a minimum fixed
and variable cost. Because the objective function and the
constraints associated with each transportation problem are
different, the direct application of the existing ACO algo-
rithms developed for other types of transportation problems
to FTPP is not viable. It is necessary to develop a special-
ized algorithm for FTPP, while employing the concept of
the ACO metaheuristic similar to other ACO applications.

In this paper, we introduce and describe ACO-FTPP, a
specially designed ACO algorithm for solving FTPP with
fixed and variable costs while considering total sediment
yields from the road network as a side constraint. We tested
the performance of the ACO-FTPP algorithm on hypotheti-
cal 100-, 300-, and 500-edge (link) FTPP and compared the
results with those obtained from solving a comparable
mixed-integer mathematical programming formulation for
the same problems. This mixed-integer formulation was
solved using LINGO, commercially available mathematical
programming software that uses the branch-and-bound algo-
rithm (Lindo Systems Inc. 2000).

ACO metaheuristic

The ACO is a metaheuristic approach for solving difficult
combinatorial optimization problems (Dorigo and Stützle
2003). ACO algorithms are inspired by the observation of
the foraging behavior of real ant colonies and, in particular,
by how ants can find shortest paths between food sources
and the nest. When walking, ants deposit a chemical sub-
stance on the ground called pheromone, ultimately forming
a pheromone trail. Although an isolated ant moves essen-
tially at random, an ant that encounters a previously laid
pheromone trail can detect it and decide with a high proba-
bility to follow it, therefore reinforcing the trail with its own
pheromone. This indirect form of communication is called
autocatalytic behavior, which is characterized by a positive
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feedback, where the more ants following a trail, the more
attractive that trail becomes for being followed (Dorigo and
Di Caro 1999).

The concept of the ACO metaheuristic is to set a colony
of artificial ants that cooperate to find good feasible solu-
tions to combinatorial optimization problems. Cooperation
is one of the most important components of ACO algo-
rithms. Computational resources are allocated to relatively
simple agents—artificial ants. These artificial ants are an ab-
straction of behavioral traits of real ants, which seem to con-
trol the shortest path finding ability. In addition, artificial
ants are enriched with some capabilities not present in their
natural counterparts (Dorigo et al. 1999).

Four main ideas taken from real ants have been incorpo-
rated into the ACO metaheuristic (Dorigo and Di Caro 1999;
Dorigo et al. 1999): (i) colony of cooperating
ants — although each artificial ant is capable of finding a
feasible solution, high-quality solutions can only emerge
from the collective interaction of individuals within the en-
tire ant colony; (ii) pheromone trail and indirect
communication — artificial ants change some numerical in-
formation, called artificial pheromone trail, stored in the
problem stage they visit, just as real ants deposit pheromone
on the path they visit on the ground; (iii) shortest path
searching and local moves — artificial ants, similar to real
ones, have as a common purpose to find the shortest path
moving step by step through adjacent edges; and (iv) sto-
chastic and myopic state transition policy — artificial ants
move through adjacent edges applying a probabilistic deci-
sion policy, which is a function of the information repre-
sented by the problem specifications (terrain conditions for
real ants) and the local modifications in the problem states
(by pheromone trails) induced by previous ants.

Some enriching characteristics have been given to artifi-
cial ants to increase the efficiency and efficacy of the col-
ony. Artificial ants (i) live in an environment where time is
discrete; (ii) have an internal memory of the ants’ previous
actions; (iii) deposit an amount of pheromone proportional
to the quality of the solution found; and (iv) are not com-
pletely blind to future route options they will face and can
incorporate look-ahead information, local optimization, and
backtracking to improve overall system efficiency.

In ACO algorithms, a finite colony of ants concurrently
and asynchronously moves through adjacent states of the
problem, applying a stochastic transition policy that consid-
ers two parameters called trail intensity and visibility. Trail
intensity refers to the amount of pheromone in the path,
which indicates how proficient the move has been in the
past, representing an a posteriori indication of the desirabil-
ity of the move. Visibility is usually computed as some heu-
ristic value indicating the a priori desirability of the move,
such as cost or distance (Maniezzo et al. 2004). Therefore,
moving through adjacent steps, ants incrementally build a
feasible solution to the optimization problem.

Once an ant has found a solution, it evaluates the solution
and deposits pheromone on the connections it used, propor-
tionally to the goodness of the solution. Ants deposit phero-
mone in various ways. They can deposit pheromone on a
connection (an edge in a graph) directly after the move is
made without waiting for the end of the solution. This is
called online step by step pheromone update. Ants also can

deposit pheromone after a solution is built by retracing the
same path backwards and updating the pheromone trail of
the used connections. This is called online delayed phero-
mone update (Dorigo and Stützle 2003).

FTPP with a side constraint

The specific FTPP we address in this paper is to find the
set of least-cost routes from multiple timber sales to selected
destination mills while considering environmental impacts
of forest road networks represented here by sediment yields.
As with most transportation problems, these FTPP can be
modeled as network problems containing vertices and edges.
Vertices represent destination nodes (i.e., mill locations), en-
try nodes (i.e., timber sale locations), and intersections of
road segments (links), whereas edges represent the road seg-
ments connecting these different points. Three parameters
are associated with every edge: fixed cost, variable cost,
and amount of sediment.

The transportation network may be composed of existing
and (or) proposed roads. Fixed cost for an existing road seg-
ment is the fixed maintenance cost for the road segment but
can equal zero in the absence of a relevant maintenance
cost. In the case of proposed roads, the fixed cost includes
the construction cost of the road segment plus a fixed main-
tenance cost. Fixed cost is a one-time cost that occurs if the
road segment is used regardless of traffic volume. Hauling
cost is a variable cost that is proportional to traffic or timber
volume transported over a road segment. Although there are
several ways to estimate the unit variable cost ($/volume)
per road segment, it is a function of the road length, driving
speed, and operating costs in most cases (Byrne et al. 1960;
Moll and Copstead 1996). Because every road segment has
different conditions, there will be a different unit variable
cost associated with each edge. The sediment associated
with each edge, expressed in tons per year per edge, repre-
sents the amount of sediment eroding from the road segment
resulting from the traffic of heavy log trucks. Like fixed
cost, we assume that sediment is produced when roads are
open regardless of traffic volume. The Water Erosion Pre-
diction Project (WEPP) model may be used to estimate
mean annual sediment yields from each road segment in
real applications (Elliot et al. 1999). Sediment yields as
well as maintenance costs could also be estimated as a func-
tion of traffic volume in this problem formulation. In addi-
tion to the three parameters related to each edge, timber
sale locations (origin vertices), selected mill locations (desti-
nation vertices), and timber volume per sale are required for
this FTPP formulation.

The problem of finding the transportation routes that min-
imize the total fixed and variable costs subject to a sediment
yield constraint for a single period is formulated mathemati-
cally as follows:

½1� Minimize Z ¼ �
ab2E
½var costab�

ðvolab þ volbaÞ þ fixed costab � Bab�
subject to

½2� �
ab2E
ðsedab � BabÞ � allowable sed

2898 Can. J. For. Res. Vol. 38, 2008

# 2008 NRC Canada



½3:1� vol saleb þ �
ab2L

volab � �
ba2L

volba ¼ 0 8b 2 S

½3:2� �
ab2L

volab � �
ba2L

volba ¼ 0 8b 2 T

½3:3� �
ab2L

volab � �
b2S

vol saleb ¼ 0 b ¼ D

½4� M � Bab � ðvolab þ volbaÞ � 0 8ab 2 E

½5� volab; volba � 0 8ab 2 E

½6� Bab 2 f0; 1g 8ab 2 E

Equation 1 specifies the objective function of the problem,
where var_costab is the variable cost of wood volume trans-
ported over edge ab in either direction, volab is the wood
volume transported over the edge from vertex a to b, volba
is the amount transported in the opposite direction (from
vertex b to a), fixed_costab is the fixed cost for edge ab in
dollars, Bab is a binary variable representing construction of
edge ab (1 if the edge is built and 0 otherwise), and E indi-
cates the total number of edges in the network. The first
constraint (eq. 2) is the sediment constraint that limits the
maximum allowable sediment amount (allowable_sed) in
tons, where sedab is amount of sediment from edge ab in
tons if the edge is built for traffic. The second, third, and
fourth sets of constraints (eqs. 3.1–3.3) ensure that all vo-
lume entering the network is channeled through the network
to the destination vertex (mill location). The constraints in
eq. 3.1 apply to the set of origin vertices, S (timber sale lo-
cations), and ensure the sum of sale volume entering the
network at vertex b, vol_saleb, plus the sum of volume
transported to b from other vertices, volab, equals the sum
of volume transported from vertex b to connecting vertices,
volba. L is the set of edges having vertex b as a from-or-to
node. The constraints in eq. 3.2 apply to the set of inter-
mediate vertices, T (that are neither origin nor destination
vertices), and ensure that the sum of volume entering vertex
b, volab, equals the sum of volume leaving that vertex, volba.
The constraints in eq. 3.3 apply to the destination vertex, D
(mill location), and specify that the sum of the volume en-
tering that vertex, volab, equals the sum of the sale volume
loaded onto the origin vertices, vol_saleb, thus ensuring all
volume that enters the network is routed to the destination
vertex. The fifth set of constraints (eq. 4) represents the
road-building constraint that makes sure that, if there is vo-
lume transported over edge ab in either direction, the edge
must be constructed and open for traffic, and thus, the fixed

cost and sediment amount are counted. M is a constant
greater than or equal to the total amount of volume to be
delivered to the mill. Lastly, the sixth and seventh sets of
constraints (eqs. 5 and 6) represent the non-negativity and
binary value constraints of our model, respectively.

Methodology

ACO-FTPP algorithm
ACO-FTPP is the specialized ACO algorithm we devel-

oped to solve the FTPP described above. ACO-FTPP has a
finite number of ants (m) that search for s least-cost paths,
one from each timber sale – destination pair, in a network of
v vertices and e edges. In ACO-FTPP, a move is defined as
the transition of an ant from one vertex to another. After a
certain number of moves, an ant arrives at its destination,
thus completing a route. Once all ants have completed their
routes for one timber sale, the least-cost path is found
among the m routes. Then, all ants move to the next timber
sale to find m routes for that sale. An iteration is completed
when all timber sales are routed to the destination vertex.

When an ant is located on a given vertex, it has to choose
where to go next. An ant decides what vertex to visit next
based on a random number and a transition probability on
each edge calculated by the following equation:

½7� �abðcÞ ¼
ð�abÞ� � ð�abÞ�

�
ab2Nl

ð�abÞ� � ð�abÞ�

where rab(c) is the transition probability with which an ant
chooses edge ab in iteration c; Nl is the set of edges sharing
the same origin vertex; and a and b are, respectively, para-
meters that control the relative importance of the pheromone
trail intensity (tab) and the visibility (hab) values on edge
ab.

The visibility value (hab) is designed to evaluate the good-
ness of each edge in terms of the objective function and the
constraint. In ACO-FTPP, hab for timber sale s is calculated
by taking the reciprocal of the sum of the total variable cost,
fixed cost, and sediment amount associated with edge ab
(eq. 8). The total variable cost is computed by multiplying
the variable cost for edge ab ($ per unit volume) and the to-
tal volume in timber sale s:

½8� �ab ¼ ½ðvar costab � vol salesÞ
þfixed costab þ sedab��1

Consequently, by combining eqs. 7 and 8, the resulting tran-
sition probability formula for a given edge is

½9� �abðcÞ ¼
ð�abÞ� � f½ðvar costab � vol salesÞ þ fixed costab þ sedab��1g�

�
ab2Nl

ð�abÞ� � f½ðvar costab � vol salesÞ þ fixed costab þ sedab��1g�

Each ant generates a random number for each connecting
edge in Nl. Then, an edge from Nl is selected as the next
move of the ant based on the transition probability and the
selected random number. The higher transition probability
an edge has, the better is the chance of it being selected.

Starting from a given s and ending at the mill destination,
an ant incrementally builds a route, moving through adjacent
edges according to the transition probability (eq. 9). At the
end, the best route among the m routes generated by the
ants is selected as the least-cost path. At the end of each
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iteration, the edges forming all least-cost paths (one for
every sale–destination pair) are identified, the objective
function value is computed, and the solution feasibility is
evaluated. If the current solution is not better than the best
found so far or is infeasible, the solution is ignored, the
pheromone trail intensities remain the same, and another
iteration starts. However, if the current solution is better
than the best solution found so far, the current solution be-
comes the new best solution, and the pheromone trail inten-
sity of the edges forming all least-cost paths is updated. At
the same time, pheromone intensity on all edges decreases
(evaporates) to avoid unlimited accumulation of pheromone.

Pheromone evaporation avoids a too-rapid convergence of
the algorithm towards a suboptimal solution, allowing the
exploration of other areas of the solution space. Pheromone
trail intensity is updated using the following equation:

½10� �abðcþ 1Þ ¼ �� �abðcÞ þ��ab

where two components are considered. Firstly, the current
pheromone trail intensity on edge ab at iteration c, repre-
sented by tab(c), is multiplied by 0 < l < 1, where 1 – l
represents the pheromone evaporation rate between iteration
c and c + 1. Secondly, Dtab represents the newly added
pheromone amount to edge ab and is calculated as

½11� ��ab ¼ �
S

k¼1
�� k

ab

where ��kab is the quantity of pheromone laid on edge ab by
the ants in iteration c, which is given by

½12� ��k
ab ¼

Q=Lk if the ants used edge ab in the kth least cost path

0 otherwise

�

where Q is a constant and Lk is the total transportation cost
over the kth least-cost path. The value of Q has to be chosen
so the amount of pheromone added to edge ab by a given
ant slightly increases the probability of selection of that
edge in the next iteration.

Given the definitions above, the ACO-FTPP solution
process can be described as follows (Fig. 1). During itera-
tion 1, an initialization phase takes place in which ants rep-
resenting the timber sale locations start in random order. An
initial equal small amount of pheromone q is set for each
edge, and transition probabilities for each edge are com-
puted considering the volume of the chosen timber sale.
Thereafter, each ant can find a route by moving from edge
to edge until the mill destination is reached.

When an ant moves through an edge, the edge is recorded
along with its from and to vertex in the ant’s internal mem-
ory. This memory is used to avoid ants returning to a previ-
ously visited vertex. When an ant arrives at a vertex whose
adjacent vertices have all been previously visited, it stops
without reaching its destination and a high cost (i.e.,
$ 999 999) is assigned to the ant’s route as a penalty. Like-
wise, if an ant has not found its destination after a maximum
number of moves, Max_moves, the ant stops, and a high
cost is assigned. For the applications used in this paper,
Max_moves is set to be the number of vertices in the net-
work plus one (v + 1).

After every ant finds its own route, the least-cost path is
selected, and all ants move to the next randomly chosen
sale (origin). Ants start moving through adjacent edges until
they find the destination mill. When the least-cost path is se-
lected for this second sale, all ants move to the next sale,
and so forth. The iteration ends when routes from all sales
have been analyzed, then the objective function and total
sediment values are calculated using the least-cost path for
each timber sale. The edges forming the s least-cost paths
(one per timber sale) are identified, and their pheromone
trail intensity is updated for the next iteration when a better

solution is found. This iterative process continues until a
stopping criterion is met. We used a maximum number of
iterations, Imax, to stop the process in a reasonable time.

Hypothetical transportation problems
To examine the behavior and performance of the algo-

rithm, we tested the ACO-FTPP using three hypothetical
forest transportation problems that include 100, 300, and
500 edges, respectively (Figs. 2–4). Variable cost, fixed
cost, and sediment amount per edge in the three problems
range from $0.01/m3 to $10/m3 of wood hauled, from $0.1
to $ 23 000 for road construction and maintenance, and from
0.4 to 200 t of sediment, respectively. The 100-edge FTPP
includes five timber sales with a total volume of 3850 m3

of wood to deliver. Volume per timber sale ranges between
670 and 860 m3. The 300-edge and 500-edge problems in-
clude 15 and 25 timber sales with total volumes of
16 700 and 36 500 m3, respectively. The highest and lowest
volumes given to a single timber sale are 750 and 1700 m3,
respectively, for the 300-edge problem, and 1030 and
1900 m3 for the 500-edge problem.2

According to our model formulation, problem complexity
can be described in terms of the number of variables and
constraints. In general, our formulation includes (3� e) var-
iables and (e + v + 1) constraints, where e and v are the total
number of edges and vertices in the road network. There-
fore, the three hypothetical problems have 300, 900, and
1500 variables and 141, 421, and 701 constraints, respec-
tively.

The three hypothetical problems were designed to be
challenging to solve to provide a rigorous test of ACO-
FTPP. These hypothetical problems form grid-shaped road
networks that are known to be more difficult to solve than
tree-shaped road networks that exist in most real-world for-
est road systems (Andalaft et al. 2003). These hypothetical,
grid-shaped problems contain many circuits resulting in
many possible paths from a given entry node to a destina-

2 The input data for the three hypothetical FTPP can be downloaded at ftp://ftp.forestry.umt.edu/special/chung/download/AntColony/.
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tion, and solution difficulty is a function of the number of
available options. On the contrary, tree-shaped road net-
works have obvious loaded-truck directions and numerous
dead-end road sections, making fewer edge–direction combi-
nations to analyze. Also, real forest road networks do not

often have intersections where four or even more road seg-
ments meet. An increasing number of road segments leaving
an intersection point dramatically increases the number of
possible paths. The degree of a vertex is defined as the num-
ber of adjacent edges. In our hypothetical examples, the

Fig. 1. Flowchart of the ACO-FTPP search process.
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minimum degree is two (i.e., vertices 1 and 40 in Fig. 2),
the maximum is seven (i.e., vertices 14 and 17 in Fig. 2),
and the mean degree of the graphs representing these trans-
portation problems is five, whereas it is rare to find road
junctions where the degree of a vertex is larger than three
in real-world forest road networks.

Setting parameters
ACO-FTPP requires values for the parameters a, b, l, q,

Q, m, and Imax. Our initial test runs of ACO-FTPP confirmed
the findings of previous studies that different parameter
combinations affect the performance of the ACO (Dorigo et
al. 1996). We conducted a search for the best ACO-FTPP
parameter combination using the 100-edge problem. Be-
cause several parameter combinations among the many we
tested could find the same best solution, we used algorithm
efficiency as well as solution quality as the criteria for se-
lecting the best parameter combination. Efficiency was

measured in terms of the number of iterations taken to find
the best solution.

Three of the seven parameters required by ACO-FTPP (q,
m, and Imax) do not affect the calculation of the transition
probability (eqs. 7–12). Therefore, these parameter values
were fixed in our trials. The parameter q does not affect the
ants search because it represents a small amount of phero-
mone deposited at time zero, tj(0), on every edge (Dorigo
et al. 1996). In most ACO algorithms, q is set to a small
positive constant. For our applications, q was set to 0.001.
Similarly, m is usually set to v (Dorigo et al. 1996). Because
our FTPP are complex problems that consider three varia-
bles associated with every edge instead of one m was set
equal to e, which is larger than the number of vertices, to
diversify the search in our applications. Based on initial
runs, Imax was set to give the algorithm enough time to find
the best solution; in our applications, Imax was set to 100.

Parameters Q, a, b, and l directly affect the calculation of

Fig. 2. Hypothetical forest transportation problem with 100 edges and 5 timber sales.

Fig. 3. Hypothetical forest transportation problem with 300 edges and 15 timber sales.
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the transition probability (eqs. 7–12); therefore, they may
have an important effect on algorithm performance. The
constant Q, which is related to the quantity of pheromone
deposited by ants, has to be chosen so the transition proba-
bility of an edge is slightly increased over iterations. Be-
cause our initial test runs showed that Q did not have a
significant effect on the solution quality, we set Q to 0.001.
The remaining parameters (a, b, and l) were identified to
directly affect the performance of the algorithm and, there-
fore, subject to the search for the best parameter combina-
tion.

To test different values of the parameters a, b, and l, a
range for each parameter was defined and partitioned into
10, 15, and 10 discrete values, respectively. Table 1 shows
the range of values and the corresponding discrete values
tested for each parameter. This yields 1500 different param-
eter combinations. We solved the 100-edge problem (Fig. 2)
using each of these combinations. It took about 50 min to
conduct 1500 runs and find the best parameter combination.

The best parameter combination found by this search was
a = 1.5, b = 0.16, and l = 0.75. We noticed from our runs
that h values were relatively very large compared with the t
values. The best parameter combination selected shows that
b <1.0 was chosen to lower the contribution of visibility
value to the transition probability. Consequently, the relative
importance of h and t are better balanced. The best value
found for l (0.75) may be explained by the fact that the
ants need to ‘‘forget’’ part of the experience gained in the
past, represented by the accumulated pheromone amount, to
better exploit new incoming pheromone information and to
avoid a fast convergence to suboptimal solutions. Dorigo et
al. (1996) observed the same behavior in their parameter set-
ting procedure.

Our test runs on the 100-edge problem indicated that b
has a larger effect on solution quality than a or l (see
Fig. 8). Thus, to find good parameter combinations for the
300- and 500-edge problems and reduce computation time
required for the search, we ran the ACO-FTPP with various

values of b (Table 1) while holding a and l to the values
used for the 100-edge problem, a = 1.5 and l = 0.75. From
these trials, the best values were b = 0.22 for the 300-edge
problem and b = 0.28 for the 500-edge problem. It took ap-
proximately 4.5 and 40.5 min to conduct the searches for the
300- and 500-edge problems, respectively. These parameters
were then used for all four problem cases analyzed in each
problem size category.

Test cases
Four cases were analyzed for each of the three hypotheti-

cal examples to test the ACO-FTPP algorithm. Case I was a
cost minimization problem without a sediment constraint,
cases II and III were cost-minimization problems subject to
increasing levels of upper-bound sediment constraints, and
case IV was a sediment-minimization problem without a
cost constraint. Whereas cases I and IV address single-goal
transportation-planning problems, cases II and III address
multiple goals represented by one objective and one side
constraint.

Once case I was solved, the minimum cost solution was
obtained, and the associated total sediment amount was cal-
culated. This sediment amount became the upper limit for
establishing the sediment constraints for cases II and III be-
cause any larger sediment constraint values would not affect
the minimum cost solution. Case IV provided the lower
limit for the sediment constraint because requiring sediment
below that limit would result in an infeasible solution. The
sediment constraint values for cases II and III were set be-

Fig. 4. Hypothetical forest transportation problem with 500 edges and 25 timber sales.

Table 1. Range of values for the parameters that control the
relative importance of the pheromone trail intensity (a) and
visibility (b), and the evaporation rate (l).

Parameter Value range Discrete values
a 0 < a < 10 0.5, 1.5, 2.5, . . ., 9.5
b 0 < b < 0.3 0.02, 0.04, 0.06, . . ., 0.30
l 0 < l < 1 0.05, 0.15, 0.25, . . ., 0.95
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tween the upper and lower limits obtained by cases I and
IV. The level of the sediment restriction is increased from
case II to case III.

To efficiently guide ants in their search for the least-cost
path, the transition probability function (eq. 9), which con-

tains fixed and variable costs and sediment amounts, was
modified for the objectives in unconstrained cases I and IV.
For case I, the transition probability considered only the var-
iable and fixed costs associated with each edge using the
following equation:

½13� �abðcÞ ¼
ð�abÞ� � f½ðvar costab � vol salesÞ þ fixed costab��1g�

�
ab2Nl

ð�abÞ� � f½ðvar costab � vol salesÞ þ fixed costab��1g�

For case IV, the transition probability considered only the
sediment amount associated with each edge using the fol-
lowing equation:

½14� �abðcÞ ¼
ð�abÞ� � ðsed�1

ab Þ�

�
ab2Nl

ð�abÞ� � ðsed�1
ab Þ�

Model verification
The ACO, like any heuristic, does not guarantee optimal

solutions. To verify the results of our algorithm and to ob-
tain a measure of solution quality, we compared ACO-FTPP
solutions with results obtained by solving the mixed-integer
mathematical programming (MIP) formulation described by
eqs. 1–4, which is known to be well suited for this type of
transportation problems (Kim and Hooker 2002). The MIP
model was formulated and solved using LINGO version
10.0, which employs the branch-and-bound algorithm (Lindo
Systems Inc. 2000). The default LINGO optimization setting
parameters were used.

Results and discussion
The ACO-FTPP was able to find feasible solutions for all

four cases for each of the three hypothetical problems. The
MIP solver was run to optimality for all cases in the three
hypothetical problems, except for cases III and IV of the
500-edge problem. Although we ran the MIP solver for up
to 2 weeks (336 h) for each of those two cases, the solver
could not reach the optimal solution. However, it did report
the best feasible solution found during that computation time
period.

The resulting objective function values and constraint val-

ues are compared between the ACO-FTPP and MIP ap-
proaches in Table 2. For the 100-edge hypothetical FTPP,
best solutions found by the two problem-solving approaches
are compared in Figs. 5a through 5h. For case I and case II,
both problem-solving approaches resulted in the same solu-
tion. The solution found for case I, the unconstrained cost
minimization problem, has an objective function value of
$128 057 and the total associated sediment amount of
606.96 tons (Figs. 5a and 5b). The objective function value
and the sediment amount for case II, where the maximum
allowable sediment value was set to 550 tons, are $151 290
and 541.93 tons, respectively (Figs. 5c and 5d). For case III,
where the sediment restriction was set to 450 tons, the best
ACO-FTPP solution has an objective function value of $185
701, which is $6780 higher than the MIP solution, while still
meeting the sediment constraint (Figs. 5e and 5f). For case
IV, where only sediment yields were minimized, the best
solution found by ACO-FTPP again matched the MIP solu-
tion with the total sediment amount of 393.67 tons (Figs. 5g
and 5h).

The results from the 300-edge hypothetical FTPP are pre-
sented in Fig. 6. All four cases analyzed show the ACO-
FTPP solutions have higher total costs than the MIP solu-
tions. For case I, the objective function value of the ACO-
FTPP solution was $8751 higher than the MIP solution
(Figs. 6a and 6b). For cases II and III where sediment con-
straints were set at 1000 and 800 t, respectively, the ACO-
FTPP solutions were $ 19 885 and $ 23 644 higher, respec-
tively (Figs. 6c–6f). For case IV, the objective function
value of the ACO-FTPP solution was 34.13 tons higher
than the MIP solution (Figs. 6g and 6h).

Figures 7a–7h compare the results from the two problem-
solving approaches for the 500-edge hypothetical FTPP.

Table 2. Comparisons on the objective function values between the ACO-FTPP and MIP solutions for the 100-edge, 300-edge, and 500-
edge hypothetical FTPP.

100 edges 300 edges 500 edges

Case

ACO-FTPP
objective
function

MIP
objective
function

Difference
between
ACO-FTPP
and MIP
(%)

ACO-
FTPP
objective
function

MIP
objective
function

Difference
between
ACO-FTPP
and MIP (%)

ACO-
FTPP
objective
function

MIP
objective
function

Difference
between
ACO-FTPP
and MIP
(%)

I 128 057. 128 057. 0.00 711 309. 702 558. 1.25 1 530 227. 1 496 979. 2.22
II 151 290. 151 290. 0.00 732 194. 712 309. 2.79 1 667 287. 1 585 881. 5.13
III 185 701. 178 921. 3.79 811 143. 787 499. 3.00 2 055 796. 2 054 435b 0.07
IV 393.67 393.67 0.00 605.97 571.84 5.97 970.30 948.58b 2.29

aThe units of the objective function value for cases I through III are dollars and for case IV are tons of sediment.
bObjective function value of the best feasible solution found by the MIP solver after 336 h of computing time.
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Like the 300-edge problem, all four cases analyzed show
that solutions found by the MIP solver (either optimal or
feasible solutions) are slightly better than the ACO-FTPP
solutions. The maximum allowable sediment amounts set
for case II and III were 2000 and 1500 tons, respectively.
The magnitude and percentage differences in objective func-
tion values between the two approaches were $ 33 248
(2.2%), and $ 81 406 (5.1%), respectively, for cases I and II.
For cases III and IV, where the MIP solver could not find

the optimal solution, ACO-FTPP solutions were slightly
higher by $1361, and 21.72 tons, respectively, than the best
solution found by the MIP solver.

Compared with the optimal solutions, the optimality level
of the ACO-FTPP solutions was at least 94% (Table 2).
There is no certainty about the optimality level of ACO-
FTPP solutions for cases III and IV of the 500-edge problem
because the MIP solver was not able to find an optimal sol-
ution in a reasonable amount of time. However, the ACO-

Fig. 5. Solution comparisons between ACO-FTPP and the MIP solver for the 100-edge FTPP.
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FTPP solutions are within 2.3% of the best feasible MIP sol-
utions found. A general trend may be seen in the results that
the solution quality of ACO-FTPP may decrease as problem
size increases (i.e., 100 edges vs. 500 edges) or the con-
straint becomes more binding (i.e., case II vs. case III).

The ACO-FTPP algorithm was implemented in the C pro-

gramming language and run on a 3.40 GHz Pentium(R) D
computer with 2.00 GB of RAM. For comparisons on com-
putation time, the same computer was used to run the MIP
solver. The computation times taken by ACO-FTPP and the
MIP solver are compared in Table 3. The ACO-FTPP com-
putation time was constant across the cases within each indi-

Fig. 6. Solution comparisons between ACO-FTPP and the MIP solver for the 300-edge FTPP.
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vidual problem because the number of ants and iterations
were constant for all cases within each hypothetical prob-
lem. However, the computation time required for ACO-
FTPP increased with problem size because the number of
ants increased with the total number of edges. In contrast,
the computation time required for the MIP solver varied

among different cases and increased as the problem size be-
came larger.

In most cases, ACO-FTPP solved problems much faster
than the MIP solver. For example, for case II in the 500-
edge problem, ACO-FTPP took only a fraction of the com-
putation time that was required for the MIP solver (2 min,

Fig. 7. Solution comparisons between ACO-FTPP and the MIP solver for the 500-edge FTPP.
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42 s vs. over 54 h). Moreover, the MIP solver was not able
to find an optimal solution after 336 h of computation time
for cases III and IV, whereas ACO-FTPP took only 0.045 h
to find feasible and relatively good solutions which are
within 0.07% and 2.29% from the MIP best solutions for
cases III and IV, respectively. It seems that both approaches
take more computation time as problem size increases, but
computation time for the MIP solver increases much more
dramatically than ACO-FTPP.

Algorithm sensitivity to parameter values
To evaluate the effects of small parameter changes on the

algorithm performance, sensitivity analyses were carried out
for a, b, and l using case I of the 100-edge problem. A
range of values for each of a, b, and l were tested while
the other parameters were held constant. The default con-
stant values used for a, b, and l were 1.5, 0.16, and 0.75,
respectively (the best parameter combination found previ-
ously).

The tested values for a were 0.5, 1.5, 2.5, 3.5, 4.5, and
5.5. Figure 8a shows how the solution quality changes
across the different values of a. When a was in the range
of 0.5 to 2.5, the objective function values were similar,
although a slightly better solution was found when a was
1.5. However, the number of iterations required to find the
best solution increased when a deviated from 1.5. When a
became >4.5, the ACO-FTPP algorithm failed to find good-
quality solutions; this indicates that, when the pheromone
trail intensity dominates the transition probability, the ACO
algorithm may get easily trapped in a local optimum.

The solution quality is also affected by b (Fig. 8b). The
tested values for b ranged from 0.10 to 0.22 in increments
of 0.02. The results show that, as b deviated from 0.16, the
solution quality became increasingly degraded because,
again, the balance between the pheromone intensity and vis-
ibility was no longer achieved.

Lastly, we tested several values 1 – l from 0.35 to 0.95 in
increments of 0.1 (Fig. 8c). The same best solution was
found when l was 0.65 and 0.75, whereas a slightly worse
solution was found with the other values of l. However, the
number of iterations taken to reach the best solution contin-
uously changed across the tested l values, which indicates
that the pheromone evaporation rate is another important
factor that may largely affect the algorithm efficiency as
well as the solution quality.

Conclusions
In this paper, we introduced the use of ACO metaheuristic

approach as an optimization technique in forest transporta-
tion planning and developed an ACO-based heuristic algo-

rithm (ACO-FTPP) to solve large forest transportation
problems with side constraints. The ability to consider side
constraints in transportation planning problems enables ana-
lysts to address various transportation and environmental is-
sues (e.g., mill capacity, traffic control, and environmental
impacts of roads) that are otherwise difficult to consider in
the planning process.

Table 3. Comparisons on the computation time (h:min:s) for a single run required by ACO-FTPP
and the MIP solver for the 100-edge, 300-edge, and 500-edge hypothetical FTPP.

100 edges 300 edges 500 edges

Case ACO-FTPP MIP solver ACO-FTPP MIP solver ACO-FTPP MIP solver
I 00:00:02 00:00:01 00:00:18 00:02:25 00:02:42 00:05:35
II 00:00:02 00:00:05 00:00:18 00:06:36 00:02:42 54:38:53
III 00:00:02 00:00:09 00:00:18 01:35:48 00:02:42 336:00:00
IV 00:00:02 00:00:10 00:00:18 00:24:19 00:02:42 336:00:00

Fig. 8. Algorithm sensitivity to the parameter (a) alpha (a) that
controls the relative importance of pheromone trail intensity,
(b) beta (b) that controls the relative importance of the visibility,
and (c) lambda (l) that controls the evaporation rate.
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The tests on complex, grid-shaped networks reported in
this paper indicated that the ACO-FTPP produces near-
optimal, minimum-cost solutions for transportation plan-
ning problems containing both fixed and variable costs as
well as a binding side constraint. The difference between
the objective function values produced by ACO-FTPP and
MIP did increase as problem size increased but were still
within 6% of the MIP solution for the largest network
problems tested. Moreover, the solution times for ACO-
FTPP increased from seconds for the small network prob-
lems to only minutes for the largest network problems
tested. In comparison, the MIP solution times increased
from seconds for the small network to many hours for the
large network, and MIP was unable to find the optimal sol-
ution in two of the four large-network cases. The observed
modest changes in solution times as problem size increased
as well as high solution quality suggest that the ACO-
FTPP has good potential as a generalized algorithm for
efficiently solving large, complex, real-world FTPP.

The current problem formulation of the ACO-FTPP is
based on a single time period. Future study should address
multiple time periods while paying careful attention to solu-
tion quality, because handling multiple periods increases
problem size substantially and adds complexity to the prob-
lem. To address multiple periods, the current problem for-
mulation can be conceptually modified as follows: (i) all of
the future fixed and variable costs should be discounted to
present values; (ii) multiple sets of decision variables associ-
ated with each edge need to be developed to represent multi-
ple time periods; (iii) conservation of flow, road building,
and sediment amount constraints for each time period should
be added; and (iv) new constraints are necessary to restrict
the use of each edge before it is constructed.

The hypothetical problems used in this study have a wide
range of road attribute values (e.g., costs and sediment
yields). Although exploring the algorithm performance as a
function of the range of road attribute values was outside
the scope of our study, one might be interested in under-
standing the algorithm sensitivity to different ranges of at-
tribute values. We anticipate that the ACO-FTPP algorithm
would also work well for problems with a narrow range of
attribute values when proper algorithm parameters are se-
lected and used. The effects of differences in attribute values
on transition probability can be easily enhanced or dimin-
ished by the algorithm parameters, particularly a and b in
eq. 9. Like other heuristic solution approaches, customizing
algorithm parameters to specific problems will be crucial for
successful applications of the ACO-FTPP algorithm.

Further development of the algorithm is suggested in the
following four areas to enhance its performance as a gener-
alized approach for solving large FTPP containing side con-
straints. Firstly, the road attributes used to evaluate the
transition probability associated with each edge (fixed cost,
variable cost, and sediment amount) could be standardized
to a mean of zero and a variance of one. This would avoid
the magnitude of attribute values (as affected by unit of
measure differences, for example) affecting evaluation of
the transition probability equations that are used to predict
the goodness of a road segment in the solution. Secondly,
local search techniques such as the 2-opt heuristic can also
be combined with ACO-FTPP to improve solution quality,

although it may likely increase the computation time. The
2-opt heuristic is an exhaustive search of all permutations
obtainable by exchanging two edges adjacent in solution
found at the end of each iteration. Thirdly, to increase the
number of feasible solutions obtained by ACO-FTPP, the
variables representing the side constraints could have a
more active role in the solution building process. That is to
say, besides only affecting the transition probability; they
could be designed to predict solution feasibility through
look-ahead functions. Fourthly, because the optimal algo-
rithm parameters vary depending on the nature and size of
the problem, further evaluation on the robustness of the pa-
rameters should be conducted by applying ACO-FTPP to
various problem types. As shown in the sensitivity analyses,
the proper tuning of parameters can significantly improve
the solution quality as well as the computational efficiency
of the algorithm.
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