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a b s t r a c t

Land managers have been using fire behavior and simulation models to assist in several fire management
tasks. These widely-used models use average attributes to make stand-level predictions without consid-
ering spatial variability of fuels within a stand. Consequently, as the existing models have limitations in
adequately modeling crown fire initiation and propagation, the effects of fuel treatments can only be
evaluated based on average conditions, where the effects of thinning design (e.g., cut-tree locations)
on changing fire behavior are largely ignored. To overcome these limitations, we coupled an advanced
physics-based fire behavior model with light detection and ranging (LiDAR) technology to capture the
spatial distribution of trees within stands and model crown fire initiation and propagation in more detail.
Advanced physics-based fire behavior models are computationally demanding, and it is not currently fea-
sible to run such models for large landscapes (thousands of hectares) at which fuel treatments are often
considered. Thus, to extend the capabilities of these fine scale models to larger landscapes, we developed
logistic regression models based on tree data and fire behavior model output to predict crown fire initi-
ation and propagation for given tree locations and attributes for two weather scenarios, representing
average and severe conditions, for our study area. We applied these regression models and used tree-
level fuel connectivity prediction as measures to evaluate the effectiveness of thinning treatments for
reducing crown fire potential. We demonstrate this method using LiDAR-derived stemmap and tree attri-
butes developed for a 4.6-ha forest stand in western Montana, USA.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Historically, low intensity fires burned frequently in the wes-
tern US, with ignitions caused by lighting and humans (Allen
et al., 2002; Hessl et al., 2004). These fires functioned to control
regeneration of fire sensitive species, promote fire tolerant species,
maintain open forest structures, and reduce forest fuel loads
(Swetnam et al., 1999; Arno and Allison-Bunnell, 2002). Over the
last six decades, successful fire exclusion has contributed to the
accumulation of understory vegetation and increased stand densi-
ties, creating a greater vertical and horizontal continuity of fuels in
stand structures, which has increased the potential for
high-intensity wildfires in the western US (Arno and Brown,
1991; Mutch, 1994). Some estimates suggest that more than
27 million ha of forestland in the western US have departed signif-
icantly from natural wildland fire conditions and are at medium to
high risk of catastrophic wildfires (Schmidt et al., 2002). In re-

sponse to the continuing threat of severe wildfires, the National
Fire Plan (USDA and USDI, 2001) and the Healthy Forest Restora-
tion Act (2003) mandate that land managers restore forest habitats
and reduce the risk of wildfires in federal forests.

Landmanagers and decision makers have been using fire behav-
ior and simulation models as a tool to predict fire potential, iden-
tify stands with high risk of wildfires, and allocate resources for
fuel treatments (Finney, 2006; Ager et al., 2006; Chung et al.,
2009) However, the widely-used existing fire behavior and simula-
tion models, such as FARSITE (Finney, 1998), NEXUS (Scott, 1999),
FFE-FVS (Reinhardt and Crookston, 2003), BehavePlus (Andrews
et al., 2005), and FlamMap (Finney, 2006) use the average attribute
values of a forest stand for stand-level predictions without consid-
ering spatial variability in fuels and vegetation within a stand. For
example, the existing models for predicting crown fire initiation
(e.g., Van Wagner, 1977) and crown fire occurrence (Rothermel,
1991) are based solely on the stand canopy base height that repre-
sents the vertical distance from the top of the surface fuels to the
lower limit of canopy fuels that can sustain and vertically propa-
gate fire. However, due to variability within a stand, it is difficult
to represent an entire stand with a single canopy base height value

0378-1127/$ - see front matter � 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.foreco.2011.10.001

⇑ Corresponding author. Tel.: +1 859 257 5666; fax: +1 859 323 1031.
E-mail addresses: marco.contreras@uky.edu (M.A. Contreras), rparsons@fs.fed.us

(R.A. Parsons), woodam.chung@umontana.edu (W. Chung).

Forest Ecology and Management 264 (2012) 134–149

Contents lists available at SciVerse ScienceDirect

Forest Ecology and Management

journal homepage: www.elsevier .com/ locate/ foreco



(Scott and Reinhardt, 2001). In addition, the existing models pre-
dict crown fire propagation through canopy fuels (e.g., Van
Wagner, 1977) based on predicted crown fire rate of spread (Roth-
ermel, 1991) and the stand canopy bulk density (CBD). The calcu-
lation of CBD assumes that canopy fuels are distributed uniformly
throughout the stand, but this is unlikely the case even in stands
with simple structures (Scott and Reinhardt, 2001). Consequently,
the widely-used existing fire behavior models have limitations in
modeling crown fire initiation and propagation, as well as assess-
ing fire–atmosphere interactions that influence the initiation and
cessation of rapid and intense fires within a stand (Rothermel,
1991; Potter, 2002). Furthermore, the effects of fuels treatments,
such as fuel reduction thinning, can only be evaluated based on
average conditions (Van Wagtendonk, 1996), where the effects of
thinning design (e.g., cut-tree locations) on changes in fire behavior
are largely ignored.

To overcome the limitations of the existing fire behavior mod-
els, recent effort has been put into the development of advanced
physics-based numerical fire behavior models capable of consider-
ing spatial variability of fuels within forest stands as well as
fire–fuel and fire–atmosphere interactions (Mell et al., 2009). The
wildland-urban interface fire dynamics simulator (WFDS) devel-
oped by the National Institute for Standards and Technology is
one of the models that simulate crown fire initiation and propaga-
tion as a fine-scale, physics-based process that takes into account
size, shape, composition and spatial arrangement of fuel particles
(Parsons, 2006). WFDS can be coupled with the light detection
and ranging (LiDAR) technology, which has been widely used to
obtain tree locations and attributes (Maltamo et al., 2004; Packalén
and Maltamo, 2006; Suratno et al., 2009), to provide spatial
arrangement and characteristics of fuels within stands. The ad-
vanced, fine-scale fire behavior modeling approach can be a prom-
ising method to model crown fire initiation and spread in more
detail, as well as evaluate stand level effects of fuel treatments.
However, practical applications of the fine-scale fire behavior mod-
els have been limited due to the large amount of data and compu-
tation time required to represent detailed variability of fuels
within a stand and model the time-dependent fine scale fire–fuel
and fire–atmosphere interactions (Mell et al., 2007).

In this study, we developed an alternative method to use a fine-
scale fire behavior model (e.g., WFDS) for the purpose of improving
evaluation of fuel treatment effects on changes in fire behavior. In-
stead of running WFDS on an entire forest stand, which is a very
computationally intensive process, we run the model on different
combinations of tree arrangements to represent various spatial dis-
tributions of trees and tree attributes. Logistic regression models
were then developed to predict crown fire initiation (the transition
of fire from surface fuels to elevated crown fuels) and propagation
(spread of fire through adjacent tree crown fuels) for given tree
locations (spacing) and attributes. Crown fire initiation was pre-
dicted to occur for a given tree location and weather condition if
the simulated fire rose from surface fuels to crown fuels burning
more than 50% of crown fuels. In such case, the tree’s crown fuels
were considered vertically connected with surface fuels. Crown fire
propagation was predicted when fire spread from a burning tree
crown to an adjacent tree crown consuming more than 50% of its
crown fuels. When crown fire propagation was predicted between
two adjacent trees, then both trees crown fuels were considered
horizontally connected. Tree-level fuel connectivity predictions
from these regression models were then used as a measure to eval-
uate the effectiveness of thinning treatments for reducing crown
fire potential. We demonstrated this method using LiDAR-derived
stem map and tree attributes developed for a 4.6-ha forest stand
in the University of Montana’s Lubrecht Experimental Forest
(LEF) in western Montana, USA.

2. Methods

2.1. LiDAR-Derived Stem Map and Tree Attributes

In the summer of 2005, the National Center for Landscape Fire
Analysis (NCLFA) acquired LiDAR data over the LEF located approx-
imately 48 km northeast of Missoula, Montana in the Blackfoot
River drainage (N 46�5303000, W �113�260300) (Fig. 1). Table 1 shows
the LiDAR data acquisition parameters used for LEF. These param-
eters provided an average return density of �1 return per 2.29 m2

on the ground with a vertical accuracy of 0.15 m and a horizontal
accuracy 0.25 m (Suratno et al., 2009).

Researchers at the NCLFA separated the raw three-dimensional
LiDAR points into vegetation (aboveground) and bare earth points
using a triangulated irregular network densification method avail-
able in the TerraScan software suite (Terrasolid, 2004). Ground
points were used to create a digital elevation model (DEM) using
inverse distance weighted interpolation at 1 m resolution. The
DEM and aboveground points were used to calculate the canopy
height model (CHM) using the spot elevation method (Daniels,
2001). This approach computed the canopy height (elevation above
ground level) at each point by subtracting the DEM height from the
CHM (Suratno et al., 2009).

NCLFA researchers delineated individual trees using a stem
identification algorithm based on a combination of variable win-
dow local maxima filtering (Popescu and Wynne, 2004) and neigh-
borhood canopy height variance and return density (Rowell et al.,
2006). This approach anticipated crown width (CW) as a function
of canopy height and stand structure. For a given point in the
CHM, the approach searched for higher points within a radius of
one half the expected crown width (CW). If no such points were
found, the given point in the CHM was assumed to be a tree top.
This process was conducted for every point in the CHM to produce
a stem map (Suratno et al., 2009). For trees species at LEF, CW was
expected to be 33% of the tree height for trees in stands with can-
opy cover less than 35%, 16% of tree height for trees in stands with
moderately closed canopy cover ranging between 35% and 65%,
and 11% of tree height for trees in stands with closed canopy cover
greater than 65%. After a tree location and expected CW were esti-
mated, crown base height (CBH) was estimated using a square
search window of 2 � CW m centered at the tree location. CBH
was then estimated as the mean height of all CHM points inside
the search window divided by the associated standard deviation
of the heights. Individual tree diameter at breast height (DBH)
were estimated using the following log-linear model (n = 1555,
R2 = 0.76, Error = 7.6%) (Rowell et al., 2009).

lnDBH ¼ 1:732þ ð0:041�HTÞ þ ð0:798� RHÞ � ð0:007
� SDÞ ð1Þ

where, HT is the height of the tree (m), RH is the relative height (m)
calculated as the tree height divided by the mean height of domi-
nant and co-dominant trees in a 20 � 20 m neighborhood, and SD
is stem density of dominant and co-dominant stems in the
neighborhood.

For the applications of this study, we selected a forest stand in
LEF (see Fig. 1). The stand is 4.6 ha in size with elevations ranging
from 1270 to 1310 m, on a north-facing aspect, and an average
slope of 13.5% (0.0–36.3% slope range). Douglas-fir is the dominant
species with a small amount of ponderosa pine. The stand has an
established under- and middle-story creating continuous canopy
fuels from the ground to the top of the canopy, resulting from log-
ging in the mid-1940s and thinning in the mid-1970s. The LiDAR-
derived stem map identified 11,213 stems, most of which are
small, suppressed trees (Fig. 2).
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2.2. Wildland-urban interface Fire Dynamics Simulator (WFDS)

WFDS is an extended version of the fire dynamics simulator
developed by the National Institute of Standards and Technology,
and designed to include fire spread in vegetative fuels (Mell
et al., 2009). WFDS is a fully three-dimensional model that, in
recent year, has received considerable research attention because
it can provide more detailed predictions of fire behavior and its ef-
fect over a wider range of conditions than existing widely-used
models (Linn et al., 2002; Mell et al., 2005). WFDS is a physics-
based computational fire model able to predict fine-scale
time-dependent fire behavior, fire–fuel, and fire–atmosphere inter-
actions in three dimensions (Mell et al., 2005). WFDS attempts to
solve in some approximation equations governing fluid dynamics,
combustion, and heat transfer, where all modes of the latter one
(conduction, convection, and radiation) present in both fire–fuel

Fig. 1. University of Montana’s Lubrecht Experimental Forest boundary and the selected forest stand for the study area.

Table 1
LiDAR data acquisition parameters used for Lubretch Experimental Forest.a

Date of acquisition June 2005
Elevation 1100–1900 m
LiDAR system Leica geosystems ALS50
Average flight height above surface 1900 m
Average flight speed 70.76 m s�1

Number of strips 54
Scan frequency 25.5
Laser pulse frequency 36200 Hz
Scan angle ±35�
Sidelap 50%
Average swath width 1150 m
Average return density 0.44 m2

Average footprint 1 m2

a Taken from Suratno et al. (2009).
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and fire–atmosphere interactions are modeled (Mell et al., 2005).
WFDS uses voxels to represent the spatial distribution of fuels.
Voxel dimensions might vary from centimeters to meter based
on the scale of the fire simulation and level of detail. Fluid dynam-
ics, combustion, and heat transfer equations are solved for each
voxel to simulate fire behavior over the entire simulation domain.

2.2.1. Tree-level fuel representation
We used LiDAR-derived stem map and tree attribute inputs to

represent the spatial distribution of canopy fuels in WFDS fire sim-
ulations. Each tree is defined by its base x-, y-, and z-coordinates as
well as DBH (cm), HT (m), CBH (m), crown length (m), and CW (m).
Tree crowns are represented as frusta of right circular cones where
the bottom (larger) diameter equals the crown width at CBH and
the top (smaller) diameter equals a single voxel size. WFDS can
then determine the three-dimensional location and volume of each
tree crown, identify all voxels inside tree crowns, and assign them
canopy fuels characteristics such as bulk density and moisture con-
tent. Although fuel density varies within a tree crown, we assumed
a homogeneous fuel density of 2.2 kg m�3. This bulk density refers
to thermally thin material only (<6 mm in diameter) and was
determined by bioassays on Douglas-fir trees in tree burning
experiments (Mell et al., 2009). Note that this within-tree crown
bulk density is considerably higher than the stand level bulk den-
sities used in operational models such as NEXUS (Scott, 1999),
which include substantial void space within the canopy and thus
rarely exceed 0.5 kg m�3. Additionally, moisture content is also
likely to vary according to the fuels position inside the crown as
well as during the course of the year. For simplicity, we assumed
a constant foliar moisture content (FMC) throughout the tree
crown volume.

Amount and arrangement of surface fuels can have a significant
effect on fire behavior. Different sampling methods can be used to
estimate the amount and type of surface fuels, but surface fuels are
highly variable and detailed spatial distributions are rarely avail-
able (Sikkink and Keane, 2008). In operational fire models, surface
fuels are classified according to fuels models (Anderson, 1982), as-
sumed to be homogeneously distributed over the study area (Scott
and Burgan, 2005; Scott, 2006), and the surface fire is then mod-
eled with the Rothermel model (Rothermel, 1972). In this study,
we also assumed a homogeneous surface fire bed.

2.2.2. Weather conditions and input data
Weather conditions can have a significant effect on fire behavior

(Rothermel, 1972; Scott and Reinhardt, 2001). For the purpose of
evaluating the effects of fuel removal on fire behavior, either a
range of values for weather parameters such as wind speed and
FMC or values representing some condition of interest are usually
considered (Scott and Reinhardt, 2001; Scott, 2006). In this study,
we considered two cases representing the average and severe
weather conditions of a typical fire season in western Montana
(June–September), defined by the 50th and 90th percentiles of
each weather parameter, respectively. More extreme weather con-
ditions were not considered in this study because most fuel treat-
ments are not likely effective in changing fire behavior under such
conditions (Finney and Cohen, 2003). In WFDS, weather conditions
are defined by wind speed (m/s), ambient temperature (�C), ambi-
ent relative humidity (%), and FMC (%). We used historical observa-
tion data from the Seeley Lake (N 47�1005800, W �113�2605000)
weather station, located approximately 30 km north of LEF,
obtained from the National Fire and Aviation Management web
application (http://famtest.nwcg.gov/fam-web/). Weather records
consist of daily observations recorded at 13:00 h from July 1st
1954–January 4th 2010. From these observations, we selected
independent percentiles of wind speed, temperature, and relative
humidity values associated with both weather conditions. Due to
the lack of historical FMC data in our study area, we used a default
FMC of 100% and 75% for the average and severe weather condi-
tions, respectively.

In the WFDS model, the complex dynamics of a fire burning in
crown fuels can produce significant fluctuations in the rate of
spread and energy released in the surface fire, particularly at fine
scales. As this highly dynamic (although realistic) behavior made
it difficult to produce consistent surface fire conditions at the
individual tree scales of our simulations, we chose to use a less
dynamic, but more predictable, approach for characterizing the
surface fire behavior. This can be accomplished in WFDS with a
user-assigned surface fire, in which, the rate of spread (ROS) in
m/s, heat release rate per unit area (HRRPUA) in kW/m2, and resi-
dence time in seconds are all set as model inputs. We arbitrarily se-
lected ROS values of 0.05 and 0.10 m/s, and HRRPUA values of 650
and 700 kW/m2 for the average and severe weather conditions,
respectively. Based on numerous initial test run, we believe these
two surface fire characteristics values provide WFDS surface fire
behaviors that effectively capture the differences between both
weather conditions. Residence time is the time required for the
flame to pass a stationary point at the top of the surface fuel
(Anderson, 1969). The same residence time was used for both
weather scenarios because it is a function only of the characteristic
surface-area-to-volume ratio of the fine fuel particles that carry
fire spread (Anderson, 1969). Residence time has been reported
to range from 7 to 20 s (Rothermel, 1983) based on fuel model
(Anderson, 1982), but more recent studies developed to predict
ignition of crown fuels (Cruz et al., 2006) have used values between
20 and 80 s. We arbitrarily used a residence time of 20 s set to be
within the range of values used in previous studies. Table 2 shows
the weather, fixed ROS surface fire, and crown fuel input parame-
ters for the two weather conditions used in WFDS fire simulations.
Table 2 shows the weather, fixed ROS surface fire, and crown fuel
parameter inputs for the two weather conditions used in WFDS fire
simulations. The intent of the user-assigned surface fire with
homogeneous burning conditions was to provide consistent sur-
face fire burning conditions for our fine scale crown fire initiation
and tree-to-tree propagation simulations. This consistency facili-
tated our statistical modeling approach for prediction of crown fire
initiation and propagation because the surface fire conditions
could be described as a single set of conditions, rather than a

Fig. 2. Histogram and summary statistics of DBH distribution of LiDAR-derived
trees in the study area.
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complex and variable, time and space dependent evolution of sur-
face fire conditions.

2.3. Tree-level Fuel Connectivity

We designed WFDS simulations to model crown fire ignition
and propagation independently because the transition of fire from
surface to crown fuels and the propagation of fire through adjacent
tree crowns are separate processes influenced by different tree and
fuel characteristics (i.e., CBH and tree spacing, respectively).

2.3.1. Vertical fuel connectivity – crown fire initiation
WFDS simulations were designed to determine a critical CBH

that allows crown fire initiation given the burning characteristics
of each weather condition. A simulation domain was set up within
a small area of 0.24 ha, 60 m long � 40 mwide � 30 m high (Fig. 3).
For fire computations this area was divided into 120 � 80 � 60
voxels of 0.5 m resolution. Surface fuels that burn with the

characteristics defined by HRRPUA, ROS, and residence time were
simulated within the spatial domain. A fire ignition point was
placed in the middle of the left edge of the simulation domain.
Nine trees were placed systematically in a grid starting at 20 m
from the left edge of the simulation domain. We arbitrarily se-
lected 15-meter spacing between tree stems to ensure the surface
fire was the only heat source contributing to crown fuel ignition.
Fig. 3 shows an example of a WFDS simulation for crown fire initi-
ation. Trees in a given simulation were set to have varying sizes
(i.e., DBH, HT) but a similar CBH. For a given WFDS simulation, a
target CBH was set, and nine trees with CBH within 0.25 m from
the target CBH were randomly selected from the LiDAR dataset
and placed in the simulation domain. Fourteen different CBH val-
ues were considered in this study, ranging from 0 to 6.5 m at inter-
vals of 0.5 m. For each target CBH value, we developed 10
repetitions resulting in a total of 140 crown fire initiation simula-
tions under each weather condition.

2.3.2. Horizontal fuel connectivity – crown fire propagation
WFDS simulations were designed to predict crown fire propaga-

tion from a burning tree crown to an adjacent tree crown in front of
the flaming front. A simulation domain was set to 30 m long -
� 20 m wide � 30 m high, which resulted in 60 � 40 � 60 voxels
with a 0.5 m resolution. As in the crown fire ignition simulations,
surface fuels burning with the characteristics defined by HRRPUA,
ROS, and residence time were simulated within the spatial domain,
and a fire ignition point was located in the middle of the left edge.
One source tree representing the flaming front with crown fuels
expected to ignite was placed at the center of the domain and a tar-
get tree ahead of the flaming front was placed to the right (Fig. 4).
Spacing between these two trees (SP) was defined as the horizontal
gap distance between their crown projections (edge to edge). We
simulated crown fire propagation with several SP values ranging
from 0 to 3.5 m at intervals of 0.5 m. To account for wider flaming
fronts formed by more than one tree, we also considered one and
two additional source trees. When considering two trees forming
the flaming front, one additional source tree was placed next to
the first source tree on a randomly selected side. Both source trees
were placed such that their crown fuels overlap to ensure a rela-
tively continuous heat source from both trees. We arbitrarily se-
lected a crown projection overlap of 10% the distance between
both tree centers (see Fig. 4). When considering a flaming front
formed by three trees, one additional source tree was placed on
each side of the first source tree located at the center of the simu-
lation domain also with a crown overlap of 10% of the tree spacing.
Tree sizes were randomly selected from the LiDAR dataset for tree
attributes. However, a low CBH (i.e., 0.5 m; based on initial test

Table 2
Weather, fixed rate of spread (ROS) surface fire, and crown fuel inputs used in WFDS
fire simulations.

Average conditions (50th
percentile)

Severe conditions (90th
percentile)

Weather
20-ft Wind speed 2.22 (m/s) 3.56 (m/s)
Max. ambient

temperature
26.1 �C 32.1 �C

Ambient relative
humidity

26% 14%

Fixed ROS surface fire
ROS 0.05 (m/s) 0.1 (m/s)
HRRPUA 650 (kW/m2) 700 (kW/m2)
Residence time 20 (s) 20 (s)

Crown fuelsa

Foliar moisture
content

100% 75%

Material density 520 Kg m�3 520 Kg m�3

Bulk density 2.2 Kg m�3 2.2 Kg m�3

Surface Area:
Volume

4000 4000

Drag coefficient 0.375 0.375
Char fraction 0.25 0.25
Initial temperature 26.1 �C 32.1 �C
Max. Burning Rate 0.4 0.4
Max. Dehydration

Rate
0.4 0.4

a For more detailed discussion of crown fuel parameter inputs, see Mell et al.
(2009).

Fig. 3. WFDS simulation design for crown fire initiation showing nine trees with different dimensions but similar CBH (i.e., 2 m).
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runs) was assigned to the source trees to ensure tree crown igni-
tion, while the target tree’s CBH was kept relatively high (i.e.,
3.0 m; based on initial test runs) to avoid crown fire initiation from
a surface fire. Ten repetitions of each fire simulation were devel-
oped, resulting in a total of 240 crown fire propagation simulations
under each weather condition.

2.4. Regression Models

We calculated the percentage of dry mass loss (DML) for each
tree at the end of all WFDS fire simulations to quantify the extent

of tree-level burning (Murray et al., 1971). Percent DML was then
converted into a binary variable to represent whether or not tree
burning occurred (1 if percent DML >0.5 and 0 otherwise), and
used as a response variable.

Logistic regression analysis was used to model the percent DML
because of the nature of our response variable (i.e., the occurrence
or not of tree burning). The multiple logistic regression model has
the following form:

P ¼ egðxÞ

1þ egðxÞ
ð2Þ

Fig. 4. WFDS simulation design for crown fire propagation. Examples show three, one, and two trees forming the flaming front (a, b, and c) and increasing spacing between
the source and target tree.
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with the logit function given by the equation,

gðxÞ ¼ b0 þ b1x1 þ b2x2 þ . . .þ bixi ð3Þ

where, P is the probability that tree burning will occur, xi are the
independent variables, and bi are coefficients estimated through
the maximum likelihood method, which will select coefficient
values that maximize the probability density as a function of the
original dataset (Hosmer and Lemeshow, 2000).

In the R software platform (The R development team http://
www.R-project.org), we fit a binomial generalized linear model
specified by giving a two-column response using the glm function.
To predict crown fire initiation, we considered three tree dimen-
sions – DBH, HT and CBH – as potential independent variables. Be-
cause CW and crown length can be obtained from HT and CBH,
they were not considered as potential predictors. For crown fire
propagation, in addition to the three tree dimensions, we included
SP as well as measures of tree density as surrogates of the flaming
front size approaching the target tree (see Fig. 4) and considered
them as potential predictors.

For measures of tree density, we used six distance-dependent
competition indices to include trees forming the flaming front
(i.e., one, two, or three source trees – see Fig. 4). Table 3 shows
the distance-dependent competition indices considered in this
study. CI1 (Hegyi, 1974) and CI2 (Braathe, 1980, as cited in Pukkala
and Kolström, 1987) are size-ratio competition indices using DBH
and HT as indicators of tree size, respectively. CI3 through CI6 are
size-ratio indices employing sums of subtended angles (Rouvinen
and Kuuluvainen, 1997). CI3 is the sum of horizontal angles origi-
nating from the target tree center and spanning the DBH of the
each source tree. CI4 is the sum of the horizontal angles multiplied
by the ratio of the DBH of the source trees and the target tree. CI5 is
the sum of vertical angles from the target tree base to the top of the
source trees. CI6 includes the ratio of the HT between the source
trees and the target trees. These indices were developed to mea-
sure the competition level experienced by a given tree. However,
their formulations effectively capture proximity and size of the
flaming front by incorporating size and location of trees forming
the flaming front which is related to the amount of heat released
from the approaching fire and transferred to the target tree.

We calculated three model performance measures: sensitivity
(proportion of ignited trees correctly predicted as such), specificity
(proportion of not-ignited trees correctly predicted), and overall
accuracy (proportion of ignited and not ignited trees correctly pre-
dicted as such). For model selection purposes, we started with all
potential predictors, and then removed insignificant variables
(a = 0.05) to obtain a parsimonious model with high predictive
quality in terms of these three performance measures.

2.5. Thinning Scenarios

We considered three thinning scenarios to evaluate their effects
on reducing crown fire potential. Fig. 5 shows the location of all Li-
DAR-derived trees, and the locations of leave-trees considered in
each thinning scenario in the study area. Thinning scenario I
(Fig. 5b) represents the case of applying a thinning from below
where primarily small suppressed and intermediate trees are re-
moved to reduce the vertical continuity of fuels and total fuel avail-
ability. Under this thinning prescription, all small trees with a DBH
less than 12.7 cm (5 inches) were assumed to be cut, piled and
burned. Larger trees were considered merchantable and to be ex-
tracted for sale. Tree selection (location of cut- and leave-trees)
was done manually simulating the marking process carried out
by markers on the ground based on spacing between trees and tree
sizes. We visually identified dense groups of trees on the stem map
(Fig. 5b). Then selected the tree with largest DBH as a leave-tree
and remove (mark as cut-trees) all smaller trees within a 2.5 m
radius. For scenario II, cut-trees were manually selected until a tar-
get tree density of 400 leave-trees per hectare was met (Fig. 5c).
For scenario III, additional cut-trees were selected among the
leave-trees used in scenario II until a target tree density of 300
leave-trees per hectare was met (Fig. 5d). For the purpose of eval-
uating tree-level fuel connectivity on different stand conditions
and tree density, the target tree densities were arbitrarily selected
resulting in an average spacing of 5.0 and 5.8 m between trees for
scenarios II and III, respectively.

In practice, thinning treatments can alter surface fire model,
fuel moisture, and mid-flame wind speeds, but these factors were
assumed constant for this analysis in all three scenarios to focus on
the examination of changes in the spatial distribution of leave-
trees. Consequently, for each leave-tree in each thinning scenario,
we applied the crown fire initiation models to predict vertical fuel
connections based on model selected tree dimensions (i.e., HT,
CBH). Horizontal fuel connections among adjacent trees were pre-
dicted by applying the crown fire propagation models based on
model selected predictors (i.e., tree dimensions, tree spacing and
partial tree density). A flaming front area of 1.5 � 10 m centered
at the first source tree location was used to search for additional
source trees. Trees inside the flaming front area were then consid-
ered as additional source trees. Fig. 6 shows an example of a flam-
ing front formed by three trees, a source trees and two additional
source trees (dashed crown projections), used to predict crown fire
propagation between the source tree and the target tree (solid
crown projections). We predicted horizontal fuel connections for
each pair of leave-trees in each thinning scenario.

After predicting tree-level fuel connectivity among leave-trees
in the study area, we evaluated the three thinning scenarios in
terms of the number of predicted vertical and horizontal fuel con-
nections. The number of vertical connections represents the num-
ber of trees that would ignited under a given weather condition.
Similarly, for a given weather conditions, the number of horizontal
fuel connections represents the amount of trees that would burn
after fire reaches crown fuels through vertical fuel connections.

3. Results and discussion

3.1. Regression models: Determination and Testing

3.1.1. Crown fire initiation – vertical fuel connectivity
WFDS simulation results for predicting crown fire initiation

indicate that the range of CBH values that allow crown fire initia-
tion varies with weather conditions. Table 4 shows the proportion
of trees that ignited at different CBH values analyzed in this study
under each weather condition. Based on these results, we limited

Table 3
Distance-dependent competition indices used to obtain measures of partial tree
density.

Index Source Equation

CI1 Hegyi (1974)
Pn

i¼1di=ðd� distiÞ
CI2 Braathe (1980), cited in Pukkala and

Kolström (1987)

Pn
i¼1hi=ðh� distiÞ

CI3 Rouvinen and Kuuluvainen (1997)
Pn

i¼1 arctanðdi=distiÞ
CI4 Rouvinen and Kuuluvainen (1997)

Pn
i¼1ðdi=dÞ � arctanðdi=distiÞ

CI5 Rouvinen and Kuuluvainen (1997)
Pn

i¼1 arctanðhi=distiÞ
CI6 Rouvinen and Kuuluvainen (1997)

Pn
i¼1ðhi=hÞ � arctanðhi=distiÞ

n Number of source trees forming the flaming front (i.e., one, two, three); di DBH of
the ith source tree (cm); d DBH of the target tree ahead of the flaming front (cm);
disti horizontal distance from the ith source tree to the target tree (m); hi height of
the ith source tree (m); h height of the target tree (m).
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CBH values considered in the development of regression models to
emphasize modeling efforts on CBH values effectively covering the
full range of responses (0–100% crown fire initiation) and avoid

over-estimation of models’ predictive quality. For example, under
the average weather conditions, crown fire initiation was predicted
for 100% of trees with CBH of 1.5 m, hence for all trees with smaller

Fig. 5. LiDAR-derived stem map of trees in the study area (a), and location of leave-tree under thinning scenarios I through III, (b) through (d), respectively.
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CBH values. Contrarily, crown fire initiation did not occurred at
trees with CBH values of 4.5 m, and thus did not occur for trees

with larger CBH values. Simulation results from trees with CBH
smaller than 1.5 m and larger than 4.5 m do not contribute to
explain the variability in the simulation results, and including
these results would only inflate the predictive quality of the mod-
els. Consequently, we considered trees with CBH from 1.5 to 4.5 m
for the average weather conditions, and trees with CBH from 3.5 to
6.5 m for the severe weather conditions.

Tree height is the tree attribute directly measured using LiDAR
data and because it was used to estimate DBH (Eq. (1)), HT and
DBH present a strong correlation (Table 5). On the other hand,
CBH is not well correlated with either DBH or HT. CBH is the tree
attribute most strongly correlated with percent DML (r = �0.723).
This negative correlation indicates that as CBH increases, the prob-
ability of crown tree ignition decreases.

For both weather conditions, the selected logistic regression
model included HT and CBH as independent variables. As CBH di-
rectly affects the amount of heat transfer from the surface fire to
crown fuels, it is a significant predictor of crown fire initiation.
Although, HT is not strongly correlated with percent DML, its inclu-
sion in the logistic model indicates it is a significant variable for
predicting the binary response of crown fire initiation. This could
be explained because HT is directly proportional to CW, which is
related to the crown base area being heated from the surface fire.
Thus, trees with larger crown base areas absorb radiative and con-
vective heat from the surface fires for longer periods of time than
trees with smaller crown base areas. Interaction between CBH
and HT was also tested but it was insignificant for both weather
scenarios.

The logit function associated with the final crown fire initiation
prediction models for the average and severe weather conditions
are presented in Eq. (4) and (5), respectively.

gðxÞ ¼ 5:98838þ ð0:19224�HTÞ � ð2:86137� CBHÞ ð4Þ

gðxÞ ¼ 10:93897þ ð0:24285�HTÞ � ð2:84814� CBHÞ ð5Þ
The difference in the intercept coefficient value between both

models reflects the difference in the surface fire burning condi-
tions, where a tree is less likely to ignite under the average weather
conditions than the severe conditions. In concordance with our
assumption of crown fire ignition (percent DML > 0.5), we also as-
sumed ignition will occur when the predicted probability P > 0.5.
The resulting performance measures for both crown fire initiation
models have similar prediction quality with overall accuracy levels
of approximately 87% and 86% for the average and severe condi-
tions, respectively (Table 6). Sensitivity and specificity indicate
similar ability to predict ignited and not-ignited trees in both
weather conditions.

3.1.2. Horizontal fuel connectivity – crown fire propagation
WFDS simulation results for crown fire propagation show that

weather conditions largely affect the ranges of tree spacing that al-
low fire propagation between adjacent trees. Under the average
weather conditions, fire did not propagate when SP between trees
was larger than 1.0 m (Table 7). This is mainly because of the

Fig. 6. Schematic of the flaming front area used to estimate crown fire propagation
between a source tree and a target tree.

Table 4
Percentage of trees expected to ignite for each target crown base height
(CBH) value considered in the crown fire initiation simulations under both
weather conditions.

CBH (m) Average conditions (%) Severe conditions (%)

0.0 100 100
0.5 100 100
1.0 100 100
1.5 100 100
2.0 93 100
2.5 89 100
3.0 33 100
3.5 15 100
4.0 11 89
4.5 0 78
5.0 0 44
5.5 0 19
6.0 0 19
6.5 0 0

Table 5
Correlation matrix showing the relationship between tree attributes and their
relationship with percent dry mass loss (DML).

DBH (cm) HT (m) CBH (m) DML (%)

DBH (cm) – 0.828 0.187 0.054
HT (m) – 0.195 0.085
CBH (m) – �0.727

Table 6
Logistic regression models’ performance for predicting vertical fuel connectivity (crown fire initiation) under average and severe weather conditions.

Average weather conditions
Regression result not-ignited Regression result ignited Accuracy = 0.8714

WFDS predicted not-ignited 331 41 Sensitivity = 0.8450
WFDS predicted ignited 40 218 Specificity = 0.8898

Severe weather conditions
Regression result Not-ignited Regression result Ignited Accuracy = 0.8619

WFDS predicted not-ignited 270 47 Sensitivity = 0.8722
WFDS predicted ignited 40 273 Specificity = 0.8517
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relatively low wind speed used in these weather conditions (see
Table 2). On the other hand, under the severe weather scenario
where wind speed is about 60% higher than the average condition,
fire propagated in some cases where SP was 3.0 m. These results
are in concordance with literature indicating that wind speed is
one of the most important drivers of crown fire propagation
(Rothermel, 1983). Similar to the simulation results from the
crown fire initiation, we limited the range of SP considered in the
development of regression models to emphasize modeling efforts
on SP values effectively covering the full range of responses (0–
100% crown fire propagation) and avoid over-estimating the pre-
dictive quality of the models. We considered SP from 0.0 to 1.5 m
and from 0.5 to 3.5 m for average and severe weather conditions,
respectively.

The six measures of partial tree density present strong correla-
tion among each other because of the similarities in their formula-
tion (Table 8). These competition indices were evaluated
individually along with the other potential predictors to avoid
colinearity issues. In general, competition indices are not strongly
correlated with percent DML. The indices more correlated with
the response variable presented r values of about 0.49.

For both weather conditions, the selected logistic regression
model included HT, SP as independent variables. Also competition
indices CI1 and CI3 were retained in the models for the average and
severe weather conditions, respectively (Eq. (6) and (7)).

gðxÞ ¼ �5:3475þ ð0:2855�HTÞ � ð2:1397� SPÞ þ ð2:2222
� CI1Þ ð6Þ

gðxÞ ¼ �6:9064þ ð0:3194�HTÞ � ð3:2356� SPÞ þ ð69:4118
� CI3Þ ð7Þ

Based on the models’ coefficients, the probability of crown fire
propagating from a source tree to a target tree increases as the tar-
get tree’s height increases. As expected, the probability of crown
fire propagation decreases with increasing spacing between trees.
The larger the flaming front, as measured by CI1 and CI3, the larger
the probability of crown fire propagation. The resulting perfor-
mance measures for the crown fire propagation model under the
average conditions show an overall predictive quality of 80% (Table
9). Sensitivity and specificity measures show that the model better
predicts cases where fire does not propagate through adjacent
trees than when fire propagates (85% vs. 71%). For the severe
weather conditions, the model has an overall predictive quality
of about 93% and similar sensitivity and specificity levels (Table
9). The lower predictive quality of the model for average weather
conditions might be explained by the fact that even with zero spac-
ing between trees, fire propagated only to 55% of target trees (see
Table 7). If trees with overlapping crowns (negative SP values)
where included in the analysis to obtain fire propagation to 100%
of target trees, predictive quality is likely to increase.

From the results of WFDS fire simulations for both weather con-
ditions, we observed variability in crown fire propagation among
trees with similar dimensions as well as trees with an approaching

Table 7
Percentage of adjacent trees burned through crown fire propagation for each target
spacing (SP) under both weather conditions.

SP (m) Average conditions (%) Severe conditions (%)

0.0 55 100
0.5 40 100
1.0 20 89
1.5 0 67
2.0 0 56
2.5 0 22
3.0 0 33
3.5 0 0

Table 8
Correlation matrix of the six competition indices and their relationship with percent
DML.

CI1 CI2 CI3 CI4 CI5 CI6 % DML

CI1 – 0.936 0.828 0.912 0.794 0.896 0.298
CI2 – 0.815 0.804 0.836 0.932 0.350
CI3 – 0.819 0.969 0.829 0.486
CI4 – 0.726 0.902 0.275
CI5 – 0.825 0.494
CI6 – 0.343

Table 9
Logistic regression models’ performance for predicting horizontal fuel connectivity (crown fire propagation) under average and severe weather conditions.

Average weather conditions
Regression result not-ignited Regression result ignited Accuracy = 0.8000

WFDS predicted not-ignited 64 11 Sensitivity = 0.7111
WFDS predicted ignited 13 32 Specificity = 0.8533

Severe weather conditions
Regression result not-ignited Regression result ignited Accuracy = 0.9381

WFDS predicted not-ignited 93 7 Sensitivity = 0.9369
WFDS predicted ignited 7 104 Specificity = 0.9300

Table 10
Tree-level fuel connectivity results from the logistic regression models under both weather conditions for each thinning scenario.

Thinning
scenario

Weather
conditions

Number of
trees

Crown fire initiation Crown fire propagation

Number of trees
ignited

Percentage of trees
ignited

Number of connected
clusters

Average connection
per tree

Average trees per
cluster

I Average 2645 99 3.75 82 7.28 32.26
Severe 536 20.26 38 10.49 69.60

II Average 1840 76 4.13 109 4.29 16.88
Severe 393 21.36 73 5.27 25.20

III Average 1380 66 4.78 211 2.63 6.54
Severe 289 20.94 158 3.09 8.73
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crown fire of similar size (represented by the number and size of
trees forming the flaming front). Similarly, fire simulation results
present variability in crown fire initiation among trees of similar
sizes (i.e., HT and CBH). This variability is likely to be explained
by micro fire–fuel, fire–atmosphere interactions considered and
modeled in WFDS simulations. Although we could theoretically ex-
tract measures of these interactions from the WFDS simulation re-
sults (such as resulting flame height, and wind profile) and include

them as predictors in our logistical regression models, it would be
impractical to obtain this type of information on the ground.

3.2. Evaluation of Alternative Thinning Scenarios

The tree-level fuel connectivity results from applying the logis-
tic regression models to each of the three thinning scenarios are
presented in Table 10. For all thinning scenarios, the number of

Fig. 7. Location and size of clusters formed by predicted tree-level fuel connections for thinning scenario I under average (a) and severe (b) weather conditions.
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trees expected to ignite under the average weather conditions is
smaller than under the severe weather conditions because of the
less intense surface fire. About five times more trees are expected
to ignite under the severe weather conditions than the average
conditions. As thinning intensity increases, fewer small trees with
low CBH are left in the forest stand, and thus the number of trees
expected to ignite decreases under both weather conditions.

Fuel connections between pairs of adjacent trees were also pre-
dicted by applying the crown fire propagation prediction models.
As crown fire propagates only through nearby adjacent tree crowns
(i.e., SP 61 m and 3 m under the average and severe weather con-
ditions, respectively), fuel connections between adjacent trees are
predicted, which in turn form clusters or groups of connected trees
throughout the forest stand. The spatial distribution and size of

Fig. 8. Location and size of clusters formed by predicted tree-level fuel connections for thinning scenario II under average (a) and severe (b) weather conditions.
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these clusters of connected trees predicted under each weather
condition for thinning scenarios I through III, are shown in Figs. 7
through 9, respectively.

For thinning scenario I, the crown fire propagation model for
each tree in the stand under the average weather conditions pre-
dicted 82 clusters of connected trees (Fig. 7). Each cluster is formed
by an average of 32.26 tree-level fuel connections and each tree’s

crown fuels are connected to an average of about seven adjacent
trees. When severe weather conditions are considered, crown fire
can propagate over a larger distance between adjacent trees. The
model thus predicted a larger number of average fuel connections
per tree compared with the average conditions (Table 10), which
resulted in fewer and larger clusters of connected trees. The num-
ber of clusters predicted under the severe weather conditions is

Fig. 9. Location and size of clusters formed by predicted tree-level fuel connections for thinning scenario III under average (a) and severe (b) weather conditions.
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about 30% of those predicted under the average conditions, and the
average cluster is formed by about 2.5 times as many trees, where
trees are connected to about 30% more adjacent trees. Under both
weather scenarios, most clusters are formed by less than 20 con-
nected trees, but there are a few large clusters connecting a large
number of trees. For example, 5% of the clusters connect about
95% of the entire trees in the stand, and the largest cluster connects
about 60% and 90% of trees under the average and severe weather
conditions, respectively (shaded areas show the largest cluster in
Fig. 7).

For thinning scenario II, the crown fire propagation models pre-
dicted a larger number of smaller clusters than those predicted for
thinning scenario I because the more intensive thinning intensity
left fewer and larger trees in the stand. Under the average weather
conditions there are almost 30%more clusters as thosepredictedun-
der the severe conditions; however, clusters under severe condi-
tions are much larger and trees are connected to more adjacent
trees (Table 10). The same pattern of few clusters connecting most
trees in the standobserved in thinning scenario I appears in thinning
scenario II under bothweather conditions (Fig. 8). The largest cluster
connects approximately 55% and 70% of the trees under the average
and severe weather conditions, respectively (shaded areas in Fig. 8).
For thinning scenario III, the number of clusters under bothweather

conditions is about twice as many as those predicted for thinning
scenario II. However, cluster size is about one third of those in sce-
nario II averaging 6.54 and 8.73 trees under the average and severe
weather conditions, respectively (Table 10). The largest cluster is
also much smaller than those for the previous thinning scenarios
connecting about 36% and 59% of the remaining trees under the
average and severe weather conditions (shaded areas in Fig. 9).

3.3. Capturing Spatial Variability of Fuels

The results of the tree-level fuel connectivity prediction models
from the three thinning scenarios suggest that as thinning inten-
sity increases crown fire potential decreases, as represented by
the number of vertical and horizontal fuel connections. Consistent
conclusions can be obtained using the widely-used existing fire
behavior model such as FlamMap (Finney, 2006) to predict crown
fire potential for the study unit. However, as mentioned before,
existing models are designed for stand-level predictions and ignore
spatial variability of fuels within stands, which can have a signifi-
cant effect on changing fire behavior. For example, for the same
thinning prescription, a given combination of cut-trees might re-
sult in minimal crown fire propagation through adjacent tree
crowns because of relatively large spacing among leave-trees

Table 12
Summary statistics for average stand attributes obtained after six alternative combinations of leave-trees.

Leave-tree selection Tree attribute Range of values

Min. 1st Qu. Median Mean 3rd Qu. Max.

Manual HT 7.79 12.20 15.02 15.49 17.94 33.05
Random 1 7.93 12.32 14.95 15.50 18.13 32.09
Random 2 7.93 12.33 14.96 15.48 18.09 32.09
Random 3 7.79 12.44 15.04 15.62 18.14 33.05
Random 4 7.79 12.44 15.15 15.56 18.10 33.05
Random 5 7.79 12.45 15.06 15.55 18.11 29.59

Manual DBH 12.70 15.39 19.35 21.53 25.13 60.85
Random 1 12.70 15.57 19.19 21.54 25.38 60.85
Random 2 12.70 15.57 19.24 21.51 25.36 60.85
Random 3 12.70 15.86 19.43 21.79 25.75 60.85
Random 4 12.70 15.68 19.40 21.67 25.48 60.85
Random 5 12.70 15.63 19.37 21.58 25.46 58.07

Manual CBH 0.00 5.35 6.96 7.05 9.03 15.08
Random 1 0.00 5.50 7.16 7.11 8.93 15.08
Random 2 0.00 5.54 7.16 7.12 8.93 15.08
Random 3 0.00 5.51 7.23 7.18 9.08 15.08
Random 4 0.00 5.61 7.22 7.23 9.12 14.81
Random 5 0.00 5.61 7.27 7.28 9.11 15.08

Manual CW 2.34 3.66 4.51 4.65 5.38 9.91
Random 1 2.38 3.70 4.48 4.65 5.44 9.63
Random 2 2.38 3.70 4.49 4.65 5.43 9.63
Random 3 2.34 3.73 4.51 4.69 5.44 9.91
Random 4 2.34 3.73 4.54 4.67 5.43 9.91
Random 5 2.34 3.73 4.52 4.67 5.43 8.78

Table 11
Tree-level fuel connectivity results under the severe weather conditions for six alternative combinations of leave-trees under the same thinning intensity.

Leave-tree
selection

Crown fire initiation Crown fire propagation

Number of trees
ignited

Percentage of
trees ignited

Horizontal fuel
connections

Number of
connected clusters

Average connections
per cluster

Average
connection per tree

Average trees
per cluster

Manual 289 20.94 4259 158 26.96 3.09 8.73
Random 1 297 21.52 6302 140 45.01 4.56 9.86
Random 2 291 21.09 6326 137 46.18 4.58 10.07
Random 3 292 21.16 6532 145 45.04 4.73 9.52
Random 4 265 19.20 6438 150 42.92 4.67 9.20
Random 5 283 20.51 6214 152 40.88 4.50 9.08
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(i.e., SP larger than 3.5 m), while an alternative combination of cut-
trees might lead to fire propagating through most leave-trees be-
cause of small trees spacing.

To illustrate the importance of capturing the spatial variability
of fuels (i.e., tree locations) within stands, we compared alternative
combinations of leave-tree locations under the same thinning
intensity. We applied the fuel connectivity predictive models un-
der the severe weather conditions to the manually selected
leave-tree locations considered in thinning scenario III, as well as
five alternative combinations of randomly selected leave-trees. In
these latter random combinations, a given leave-tree was selected
by (i) indexing all 2645 trees in the stand, (ii) generating a random
number from 1 to 2645, and (iii) selecting the tree indexed with
the selected random number as a leave-tree. A combination of ran-
dom leave-trees was completed when 1380 distinct leave-trees
were selected.

The results of the predicted fuel connectivity show that the spa-
tial distribution of leave-trees can have a considerable effect on
crown fire potential in terms of the number of fuel connections be-
tween adjacent pairs of remaining trees (Table 11). Tree-level fuel
connectivity among the five combinations of random leave-tree
locations is relatively similar. However, all these combinations
have about 50% more fuel connections than the combination of
manually selected leave-tree location (Table 11). Combinations of
random leave-trees also have a larger number of average fuel con-
nections per tree compared with the combination of manually se-
lected leave-trees (approx. 4.5 vs. 3.0, see Table 11). All these
alternative combinations of leave-trees have practically the same
aggregated stand values (Table 12). Consequently, predictions of
crown fire potential using existing fire behavior models will also
be very similar. Determining crown fire potential by predicting
tree-level fuel connectivity can provide more a detailed assess-
ment of fire hazard than existing stand-level fire behavior models
(e.g., FlamMap) which can improve the evaluation of alternative
fuel treatments effects on changing fire behavior.

Although the models developed in this study have relatively
high predictive quality for estimating tree-level crown fire initia-
tion and propagation, based on the models’ prediction agreement
with results from WFDS fire simulations, their performance de-
pends largely on the accuracy of the input tree locations and sizes.
There are a number of ways to obtain tree locations varying from
traditional field measurements and GPS devises to advanced re-
mote sensing technologies such as high-resolution aerial photos
(Hirschmugl et al., 2007), multispectral imaging (Popescu and
Wynne, 2004), and LiDAR (Maltamo et al., 2004). The algorithms
used to develop LiDAR-derived stem maps in our study area have
correctly identified only about 53% of field sampled trees in LEF
when considering all tree classes (Suratno et al., 2009). However,
stem detection accuracy increases significantly on dominant trees.
In similar forest conditions to those of our study area, the stem
detection algorithm provided an accuracy of about 90% when con-
sidering only dominant trees (Rowell et al., 2006). As we consid-
ered only dominant trees with DBH larger than 12.7 cm, we
expect similar stem map detection accuracy.

Additionally, the relatively high predictive quality of the devel-
oped regression models is measured based on tree-level fire behav-
ior as modeled by WFDS and not on the observation of real fires.
Therefore, the models ability to predict tree-level fire behavior
on real fires is likely to differ. Although it is theoretically possible
to measure fire behavior at the tree-level on the ground, the inabil-
ity to predict the exact location of fire beforehand makes obtaining
this type of data practically impossible. As a result, we need to rely
on advanced physics-based numerical fire behavior model such as
WFDS to simulate tree-level fire initiation and propagation.

4. Conclusions

Advanced physics-based numerical fire behavior models cou-
pled with high precision vegetation mapping technologies have en-
abled us to consider individual tree-level fuel characteristics in
understanding fire behavior and evaluating the effects of alterna-
tive thinning in reducing crown fire hazards.

To facilitate practical application of the three-dimension, fine-
scale fire behavior model, such as WFDS, we demonstrated meth-
ods to develop regression models to predict tree-level vertical
and horizontal fuel connectivity using a fire simulation domain
with tree arrangements. We also applied the regression models
to evaluating various thinning treatments in terms of the number
of trees that can ignite and the number of trees through which fire
can propagate after reaching canopy fuels under a given weather
condition. The developed regression models should be applied to
areas with weather parameters similar to the weather conditions
considered in this study. Applying these models to drier, hotter
and windier areas would likely result in underestimating the num-
ber of trees that would ignite and the distance over which fire can
propagate through adjacent crowns.

We evaluated the effectiveness of alternative thinning treat-
ments for reducing crown fire potential more precisely than exist-
ing stand-level fire behavior models by applying tree-level fuel
connectivity predictive regression models. These regression mod-
els can also be implemented into algorithms to optimize the selec-
tion of individual tree removal at the stand level, so the
combination of leave-trees with the most efficient reduction of
crown fire potential is selected for a given thinning intensity. The
number of tree-level fuel connections, or other measures of fuel
connectivity such as the average number of fuel connections per
tree or average trees forming a cluster of connected tree fuels,
can be used as indices to optimize the allocation of thinning treat-
ments for altering fire behavior and reducing fire spread at the
landscape level.

Further research needs to be conducted to expand and test the
applicability of our approach. Our work is just a first step, testing
the feasibility of building regression models that can be applied to
forest stands on the basis of detailed three-dimensional fire model
simulations. There are many aspects relating to modeling fire that
we did not evaluate here. For example, three-dimensional models
such asWFDS are sensitive to the voxel resolution used in the simu-
lations; we did not test whether our outcomeswould have been dif-
ferent with smaller cell sizes. Similarly, a more exhaustive set of
WFDS fire simulation should be designed to include additional
weather factor and vegetation characteristics. Tree-level fire behav-
ior should be simulated for a range of values of FMC, ambient tem-
perature and wind speed to better account for variability existing
in the real environment. Regression models including these addi-
tional factors as predictors of crown fire initiation and propagation
can then be applied to different areas under anyweather conditions.
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