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A B S T R A C T

The purpose of this study was to investigate the use of deep learning for coniferous/deciduous classification of
individual trees segmented from airborne LiDAR data. To enable processing by a deep convolutional neural
network (CNN), we designed two discrete representations using leaf-off and leaf-on LiDAR data: a digital surface
model with four channels (DSM×4) and a set of four 2D views (4×2D). A training dataset of tree crowns was
generated via segmentation of tree crowns, followed by co-registration with field data. Potential mislabels due to
GPS error or tree leaning were corrected using a statistical ensemble filtering procedure. Because the training
data was heavily unbalanced (~8% conifers), we trained an ensemble of CNNs on random balanced sub-samples.
Benchmarked against multiple traditional shallow learning methods using manually designed features, the CNNs
improved accuracies up to 14%. The 4× 2D representation yielded similar classification accuracies to the
DSM×4 representation (~82% coniferous and ~90% deciduous) while converging faster. Further experi-
mentation showed that early/late fusion of the channels in the representations did not affect the accuracies in a
significant way. The data augmentation that was used for the CNN training improved the classification ac-
curacies, but more real training instances (especially coniferous) likely results in much stronger improvements.
Leaf-off LiDAR data were the primary source of useful information, which is likely due to the perennial nature of
coniferous foliage. LiDAR intensity values also proved to be useful, but normalization yielded no significant
improvement. As we observed, large training data may compensate for the lack of a subset of important domain
data. Lastly, the classification accuracies of overstory trees (~90%) were more balanced than those of understory
trees (~90% deciduous and ~65% coniferous), which is likely due to the incomplete capture of understory tree
crowns via airborne LiDAR. In domains like remote sensing and biomedical imaging, where the data contain a
large amount of information and are not friendly to human visual system, human-designed features may become
suboptimal. As exemplified by this study, automatic, objective derivation of optimal features via deep learning
can improve prediction tasks in such domains.

1. Introduction

Remote sensing technologies have long been a means to facilitate
data acquisition over large forested areas (Franklin, 2001). For in-
stance, aerial images have been used to map forests and monitor their
growth and regeneration (Gougeon, 1995; Pitkänen, 2001;
Quackenbush et al., 2000). However, 2D images, as snapshots of the 3D
world, lack depth information and are insufficient for more detailed
tasks such as derivation of vertical canopy structure, biomass quanti-
fication, or segmentation of individual trees. Airborne light detection
and ranging (LiDAR) directly measures depth and can capture multiple

returns per pulse, thereby representing the forested landscapes in the
form of 3D point clouds (Ackermann, 1999; Hyyppä et al., 2012;
Maltamo et al., 2014). These point clouds can be processed to segment
individual trees (Amiri et al., 2016; Jing et al., 2012; Kwak et al., 2007;
Paris et al., 2016; Popescu and Zhao, 2008; Sačkov et al., 2017; Véga
et al., 2014; Wang et al., 2008), which enable deriving individual tree
attributes such as height, crown width, and allometric relationships, as
well as predicting individual tree parameters such as type, species,
status (live or dead), or diameter at breast height (DBH) (Duncanson
et al., 2015; Vauhkonen et al., 2010; Yu et al., 2011).

Tree species information is important for appropriate stem biomass
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and dimension estimation, hence is essential for optimal management
decisions (Holmgren and Persson, 2004; Holopainen and Talvitie, 2007;
Korpela et al., 2010). Several studies have used segmented point clouds
representing individual trees to predict tree type (coniferous or decid-
uous) or species using machine learning methods (Blomley et al., 2017;
Cao et al., 2016; Harikumar et al., 2017; Holmgren and Persson, 2004;
Kim et al., 2011; Lindberg et al., 2014; Ørka et al., 2009; Reitberger
et al., 2008). In these studies, researchers derived a set of features re-
lated to crown geometry and foliage density/pattern/texture from the
LiDAR data and input the features into different classification methods
such as linear discriminant analysis (LDA), k-nearest neighbors (KNN),
random forest, and support vector machines (SVMs). A few studies have
presented automated or semi-automated approaches for identifying
useful features for the task of tree species classification (Bruggisser
et al., 2017; Li et al., 2013; Lin and Hyyppä, 2016). Previous work using
traditional learning methods has required that the set of candidate
features be assembled by an expert, with the intention of removing
redundant and less useful information from the raw data. However,
given the large amount of information contained in LiDAR point clouds
and their unfriendliness to human eyes, the expert-designed features
may be suboptimal.

Deep neural network learning methods, on the other hand, can di-
rectly map the raw input data to the target prediction (LeCun et al.,
2015; Schmidhuber, 2015). These methods pass the input through
multiple layers where, conceptually, the initial layers extract the useful
low to mid-level features and the next layers map the extracted features
to the target prediction. Designing a deep network architecture and
tuning the training hyper-parameters require some level of expertise.
However, the end result is typically not sensitive to these preliminary
steps as long as the choices fall within a reasonable range (Bergstra and
Bengio, 2012). In fact, training a deep network including feature ex-
traction and mapping them to the target predictions runs as one unified,
end-to-end optimization process; the process fits the network para-
meters into any reasonably chosen architecture/hyper-parameters such
that the global prediction task functions optimally. In contrast to tra-
ditional learning methods, this optimization objectively derives fea-
tures according to the target prediction task and minimizes subjectivity
and bias in the features extracted.

A large body of research has been devoted to a variety of deep
learning classification or segmentation tasks using 2D images as the raw
input data (Girshick et al., 2014; Krizhevsky et al., 2012). However, 3D
data have been considered less often until recently, which is due to
more costly acquisition/processing and their less intuitive and less
conventional representational formats. Unlike 2D images that can
readily be processed by a convolutional neural network (CNN) archi-
tecture, 3D data require designing the appropriate representation to
make them usable for deep learning methods (Qi et al., 2017a; Qi et al.,
2016). A number of studies have binned 3D data into voxel spaces to
create representations that can be input to and processed by a 3D CNN
(Dou et al., 2016; Maturana and Scherer, 2015; Wu et al., 2015). Al-
though voxel spaces are perhaps the most comprehensive discrete re-
presentations that preserve the raw 3D structure, they are computa-
tionally expensive to process, more prone to overfitting, and therefore
prohibitive for use with larger datasets. Taking advantage of sparsity
and non-uniformity of 3D data, a few recent studies have proposed
alternative approaches that hierarchically index the 3D space according
to the regional data density, hence lowering the computational cost (Qi
et al., 2017b; Riegler et al., 2017). These approaches take the raw point
clouds as the input and do not require any representation design, but
they use modified versions of the convolution and pooling operations to
conform to the indexing structure. Other studies have created 2.5D
digital surface models (DSMs) (Mizoguchi et al., 2017; Roth et al.,
2016; Socher et al., 2012) or multiple 2D views (Farfade et al., 2015; Su
et al., 2015) from the 3D data. If the 3D imaging/sensing technology is
able of capturing the internal structure of the measured objects, con-
version to DSM or 2D views may forego this internal structure.

However, depending on the application, DSMs and/or multiple 2D
views can provide as much useful information as a full 3D representa-
tion while being less prone to overfitting and incurring less computa-
tional cost (Kalogerakis et al., 2017; Su et al., 2015).

A few recent studies used deep learning methods to classify species
of individual trees from very high-resolution ground-based LiDAR point
clouds. Guan et al. (2015) segmented individual trees from mobile
LiDAR point clouds in an urban area, developed a waveform re-
presentation to model the geometry of the trees, and used deep learning
to convert the waveform representation to high-level features. These
features were then input to an SVM classifier to perform tree species
classification. Mizoguchi et al. (2017) also segmented individual trees
from terrestrial LiDAR point clouds, derived DSM patches representing
the tree bark texture from the clouds, and fed this information into a
CNN to perform classification between two species.

In this paper, we segment individual trees from airborne LiDAR data
representing a natural dense forest, prepare segmented crowns for input
to a CNN, and perform different shallow and deep learning experiments
on tree type classification. The main contributions of this work are to:
(i) design two discrete representations with minimal loss of information
for the 3D crown cloud captured by airborne LiDAR, (ii) benchmark
performance of deep CNN learning against shallow learning, and (iii)
investigate the effects of different design decisions with respect to
training data preparation, CNN design, training data composition, and
inclusion of domain-specific data on the classification accuracy.

2. Materials and methods

2.1. Study site, LiDAR campaign, and field survey

The study site is the University of Kentucky’s Robinson Forest (RF,
Lat. 37.4611, Long. −83.1555). RF is in the rugged eastern section of
the Cumberland Plateau region of southeastern Kentucky in Breathitt,
Perry, and Knott counties. RF features a variable, dissected topography
with moderately steep slopes, which range from 10% to over 100% and
face predominately northwest to southeast. Elevation ranges from 252
to 503m above sea level (Carpenter and Rumsey, 1976). Having been
extensively logged in the 1920’s, RF is considered a second growth
forest ranging from 80 to 100 years old, and it is now protected from
commercial logging and mining activities (Department of Forestry,
2007). RF currently extends over an aggregate area of 7,440 ha and
includes about 2.5 million (± 5.6%) trees (330 stems per ha) (Hamraz
et al., 2017b). The average canopy cover is about 93% with small
openings scattered throughout. Most areas exceed 97% canopy cover,
but recently harvested areas have an average cover as low as 63%. RF
features a diverse, contiguous, mixed mesophytic vegetation made up of
various deciduous tree species with northern red oak (Quercus rubra),
white oak (Quercus alba), yellow-poplar (Liriodendron tulipifera),
American beech (Fagus grandifolia), and sugar maple (Acer saccharum)
as overstory species. Deciduous understory species include eastern
redbud (Cercis canadensis), flowering dogwood (Cornus florida), spice-
bush (Lindera benzoin), pawpaw (Asimina triloba), umbrella magnolia
(Magnolia tripetala), and bigleaf magnolia (Magnolia macrophylla)
(Carpenter and Rumsey, 1976; Overstreet, 1984). A small number of
conifer species also exists throughout the forest including eastern
hemlock (Tsuga canadensis), which can occur in clusters near streams,
and different species of Pine (Pinus sp).

The LiDAR data are a combination of two separate datasets col-
lected with the Leica ALS60 LiDAR system (Leica Geosystems). For both
datasets, the system was set at 200 kHz pulse repetition rate and 40°
field of view, and was flown with an average speed of 105 knots
(194.46 Km/h) over strips with 50% overlap. One dataset was low
density (~2pt/m2), collected in a day in the spring of 2013 during the
leaf-off season (average altitude of 3,096m above the ground) for the
purpose of acquiring terrain information as a part of a state-wide ele-
vation data acquiring program by the Kentucky Division of Geographic

H. Hamraz, et al. ISPRS Journal of Photogrammetry and Remote Sensing 158 (2019) 219–230

220



Information. The second dataset was high density (~50pt/m2), col-
lected in three consecutive days in the summer of 2013 during the leaf-
on season (average altitude of 214m above the ground). Up to three
returns per pulse for the leaf-off and up to four returns per pulse for the
leaf-on collections were captured, and only 90–95% of the middle
portion of the flight strips was used to create the datasets. Both datasets
were processed by the vendor using TerraScan software (Terrasolid
Ltd., 2012)to classify the LiDAR points into ground and non-ground.
The ground points were then used to create a 1-meter resolution digital
elevation model (DEM) using nearest-neighbors average method to fill
the gaps.

Throughout RF, 271 regularly distributed (grid-wise every 384m)
circular plots of 0.04 ha, centers of which were georeferenced with 5m
accuracy, were field surveyed during the fall of 2013 and spring of
2014. Within each plot, DBH (cm), tree height (m), species, crown class
(dominant, co-dominant, intermediate, overtopped), tree status (live,
dead), and stem class (single, multiple) were recorded for all trees with
DBH greater than 12.5 cm. In addition, horizontal distance and azimuth
from plot center to the face of each tree at breast height were collected
to create a stem map. Excluding trees below 4m in height, a total of
3987 trees were surveyed of which 7.27% were conifers (Table 1).

2.2. Data preparation

2.2.1. LiDAR intensity normalization
The LiDAR intensity value that is recorded for each return is de-

pendent on various factors, many of which are unrelated to the vege-
tation texture (Gatziolis, 2011; Kashani et al., 2015). The distance a
LiDAR pulse travels (referred to as range), the angle at which the pulse
is scanned, and the LiDAR return number are among the controllable
factors affecting intensity, while different atmospheric factors are dif-
ficult to track. Assuming constant atmospheric conditions for the short
periods of collections (one day for the leaf-off and three consecutive
days for the leaf-on), we used a data-driven approach to normalize the
intensity values. We binned the entire forest dataset to a horizontal grid
with a cell width of 10m and randomly sampled one leaf-off and one
leaf-on vegetation point per grid cell. We then grouped the leaf-off and
the leaf-on samples by the return number, yielding three leaf-off and
four leaf-on datasets. For each of the seven datasets, we built a re-
gression model that predicted intensity based on range and scan angle.
For the leaf-on datasets, the effect of range and angle was significant:
the natural logarithm of range had a negative correlation with intensity
(P < .0001), and the cosine of angle has a positive correlation
(P < .0001) with intensity. However, we did not observe any sig-
nificant correlations between range/angle and intensity for the leaf-off
datasets. This observation is likely due to the higher flight altitude
(longer range), resulting in very low recorded intensity values with
small variations such that these correlations faded away. For each of the

four leaf-on datasets, we removed the effects of range and scan angle by
residualization (Allen, 1997), i.e., we replaced the intensity value of
each LiDAR point by the residual (observed minus predicted) value for
the point. We then scaled the residualized intensities back to an eight-
bit format to minimize the effect of return number across the datasets.

2.2.2. Individual tree segmentation and registration with field data
We included the points within a 10m buffer around the LiDAR point

clouds corresponding to the 271 field-surveyed plots to capture the
complete crowns of border trees. Using the DEM, we calculated the
height above ground for the LiDAR points and excluded the points
below 3m (ground level vegetation). We then vertically stratified the
point clouds into multiple canopy layers by analyzing the vertical dis-
tributions of the LiDAR points within overlapping locales (Hamraz
et al., 2017c). We excluded the canopy layers with densities less than
3pt/m2 from further analysis because tree segmentation at such low
densities becomes inaccurate (Evans et al., 2009; Hamraz et al., 2017a).
We then segmented each of the canopy layers independently using the
method we designed for complex vegetation structures (Hamraz et al.,
2016). This method identifies crown boundaries around the global
maximum of the canopy layer and clusters the points encompassed by
the convex hull of boundary points to complete the segmentation for
the tallest tree. This process is repeated until all the points are clustered.
Clusters representing crowns less than 1.5m in average width are fi-
nally removed as noise.

After segmentation, we re-calculated the height above ground of the
points representing each individual crown according to the median
value of DEM beneath the crown to prevent deformation of crown
shapes due to DEM variability. To register the segmented crowns with
the field data, we assigned a score to each pair of segmented crown and
field-measured stem locations. The location of each segmented crown
was taken from the crown apex. Scores were assigned based on the
difference in tree height and the leaning angle from nadir between the
crown apex and the stem location. If the height difference was less than
10% and the leaning angle was less than 5°, a score of 100 was assigned.
If the height difference and leaning angle were less than 20% and 10°
respectively, a score of 70 was assigned. If the height difference and
leaning angle were less than 30% and 15°, a score of 40 was assigned.
We then selected the set of pairs with the maximum total score where
each crown or stem location appears not more than once using the
Hungarian assignment algorithm and regarded the set as the co-regis-
tered tree pairs (Hamraz et al., 2016; Kuhn, 1955). Excluding dead
trees, a total of 2528 co-registered trees was gleaned, of which 124
(4.90%) were conifers and 2404 (95.10%) were deciduous. Smaller
understory trees, especially those represented by very low point den-
sities, were automatically excluded through the segmentation and re-
gistration process.

2.2.3. Discretization of segmented point clouds
We converted the point cloud of each tree crown to two different

representational formats: (1) a DSM with four channels (DSM×4), and
(2) a set of four single-channel 2D images (4×2D). To create the
DSM×4 format, we binned the point cloud to a horizontal grid of
128× 128 pixels of width 12.5 cm such that the apex of the segmented
crown would fall in the center pixel (Fig. 1). We then recorded the four
channel values for each pixel, which included the elevation above
ground of the highest leaf-on point, the normalized intensity of the
highest leaf-on point, the elevation above ground of the highest leaf-off
point, and the intensity for the highest leaf-off point. We chose the
small pixel width of 12.5 cm for creating the DSM image to minimize
the information loss because of falling multiple LiDAR points in a pixel.
The resulting DSM structure captures a square of 16×16m in the real
world, which is large enough to encompass an entire tree crown in
almost all cases given that tree crowns are often relatively narrow in
dense forest conditions. However, because crown width information
may be missing for some large trees, we recorded the crown area as a

Table 1
Summary statistics of trees surveyed within 271 plots in Robinson Forest.

Conifer Percent
in
Conifers

Deciduous Percent in
Deciduous

Total Percent
in Total

Dominant 10 3.45% 120 3.46% 130 3.26%
Co-Dominant 39 13.45% 919 24.86% 958 24.03%
Intermediate 78 26.90% 1409 38.12% 1487 37.30%
Overtopped 143 49.3% 1012 27.38% 1155 28.97%
Dead 20 6.90% 236 6.39% 256 6.42%
All 290 100.0% 3697 100.0% 3987 100.0%
Percent of

Total
7.27% 92.73% 100.0%

Species Count 6 37
Shannon

Diversity
Index

0.605 2.673
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separate feature alongside the DSM×4 representation.
To create the 4× 2D format, we generated one pair of aerial view

images and one pair of side profile view images for each segmented
crown (Fig. 2). One image in each pair was created from the leaf-on
point cloud, and the other was created from the leaf-off point cloud. As
with the DSM×4 format, the aerial images for a single tree crown
covered a square area of 16× 16m, with the crown apex located in the
center of the images. The pixel width, however, was set to 25 cm be-
cause depth information was not intended to be captured in the aerial
view. To create the aerial images, like the DSM×4 format, we

recorded the intensity of the highest LiDAR point in each pixel. The side
profile images were created from vertical profiles of the point clouds,
which had a thickness of 75 cm and passed through the crown apex.
Each of the side view images captured a square area of 16×16m with
a pixel width of 25 cm. The LiDAR point representing the apex was in
the top center pixel. We recorded the mean intensity of leaf-on/leaf-off
LiDAR points in the profile for each pixel. Although the majority of
trees in our dataset are taller than 16m, most airborne LiDAR points are
recorded in the upper parts of the tree crowns and therefore, a 16m
side view height was deemed sufficient to capture the crown structure

Fig. 1. The convolutional neural network structure using the crown width and the DSM with four channels created from the LiDAR point cloud of a tree crown as the
inputs.

Fig. 2. The convolutional neural network structure using the crown width and the tree height along with the four grayscale images created from the LiDAR point
cloud of a tree crown as the inputs.
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that is represented by the LiDAR points. However, because tree height
information was missing from both the aerial and side views, we re-
corded height and crown width as two separate features alongside the
4x2D representation.

The DSM×4 format resembles the 3D point cloud data by losing a
minimal 3D structure while the 4×2D format only captures the 3D
data from two 2D views taking the advantage of the symmetry of an
ideally shaped tree crown. To augment the data and increase the
training data size for deep learning experiments, we created the
DSM×4 and the 4×2D representations over 180 rotational variations
of each point cloud. We iteratively rotated the point cloud along a nadir
axis through the apex by 2° and created a DSM×4and a 4× 2D re-
presentation in each iteration. Although the 4× 2D format loses much
of the 3D information because a real tree crown have several dis-
symmetrical structural features, this information is re-gained when
using 180 rotational augmentations per instance.

2.3. Convolutional neural network models

For the DSM×4 input format, we stacked six pairs of convolutional
and max pooling layers including rectified linear units (ReLUs) as the
activation units (Fig. 1). A convolutional layer performs convolution on
sliding windows over its input according to the parameters that are
trained while a max pooling layer downsizes its input by outputting
only the maximum value of windows over the input. Each convolu-
tional layer here included four windows of 3× 3×4 with a sliding step
of one pixel that was operating on a zero-padded input to maintain the
same size for the output. Each max pooling layer included 2×2 max
pooling windows per channel, downsampling the output of the pre-
ceding convolutional layer to half of the width and the height. Oper-
ating on the representation input of size 128×128×4, this layer
composition produces a 2×2×4 output structure, which is flattened
to 16 output units. On the other hand, for the crown area input feature,
we stacked two dense layers, each including two ReLU units. We then
put the 16 units initiated from the DSM image and the two units in-
itiated from the crown area feature together and stacked two dense
layers of 25 and 10 ReLU units respectively to the end. Finally, we
added a softmax layer to obtain the probability distribution over one-
hot-encoded class labels.

For the 4× 2D input format, we stacked five pairs of convolutional
and max pooling layers including ReLU activation units per each single-
channeled 2D image (Fig. 2). Each convolutional layer included one
window of size 3×3 with a sliding step of one pixel that was operating
on a zero-padded input. Each max pooling layer included windows of
2× 2, downsampling the output of the preceding convolutional layer to
half of the width and the height. Operating on the set of four image
representation inputs of size 64×64, this layer compositions produce a
4× 2×2 output structure, which is flattened to 16 output units. On
the other hand, for the crown width and the tree height input features,
we stacked two dense layers, including four and two ReLU units, re-
spectively. Like the DSM network, we put the previous 18 units together
and added two dense layers of 25 and 10 ReLU units and a final softmax
layer respectively to the end.

The DSM×4 format allows the deep network architecture to per-
form an early fusion of the leaf-on and leaf-off data as well as the in-
tensity and height values associated with the data. The network cap-
tures the correlation between the four channels for the classification
task by including more parameters and intermediate features. On the
other hand, the 4× 2D format allows a late fusion to the network, i.e.,
the leaf-off and leaf-on data and their intensity/height values are not
fused until after the corresponding convolutional and max pooling
layers produced features independently. While the DSM×4 format
allows for a richer training model, the 4× 2D format incurs less com-
putational cost.

2.4. Mislabel correction via iterative resampling

As described earlier, registration of the segmented tree crowns to
the field-surveyed tree stem locations was done through a probabilistic
scoring process. Moreover, the GPS error for the field-surveyed plot
centers (~5 m) can exceed the distances between individual trees.
These issues likely resulted in a fraction of mis-registrations hence
yielding mislabels for the classification task in this work. Mislabeling
occurs when a field-surveyed coniferous tree stem is assigned to a
segmented deciduous tree crown or vice versa. In the semi-supervised
learning literature, a number of studies trained learning models that are
robust to such noise by modifying the learning model to explicitly ac-
count for the noise (Mnih and Hinton, 2012; Natarajan et al., 2013;
Reed et al., 2014), although these studies did not necessarily correct
mislabels for external use. Other studies attempted to eliminate/correct
mislabels by training learning models and identified mislabels by per-
forming statistical inference on the classification result of the trained
models (Bhadra and Hein, 2015; Brodley and Friedl, 1999). These
studies either used a small noise-free dataset or, when that was not
possible, made assumptions about the tolerable amount of noise in their
data to train their learning models for identifying mislabels. For the
latter scenario, some studies reported successful identification of mis-
labels in the presence of up to 40% noise in the training data (Brodley
and Friedl, 1999). Unlike general RGB images that are specifically de-
signed for human visual comprehension, remotely sensed LiDAR-re-
presented tree crowns are difficult and uncertain for human experts to
classify, making it infeasible to create a noise-free dataset. Therefore,
we performed mislabel correction through ensemble filtering (Brodley
and Friedl, 1996), which is derived by a series of resampling and sta-
tistical inferences.

We built 100 4×2D-input networks, and each network was trained
using a balanced, random sample of 80 deciduous and 80 conifer in-
stances from our labeled dataset. Random sampling was performed
without replacement: once all corresponding labeled instances were
used, we started over and continued until all 100 networks were built.
This randomization pattern ensured that all instances of a class had
(almost) equal contributions across all networks in the training process.
Training using a balanced sample for each network was to minimize the
effect of the unbalanced training data while having several networks
was to take advantage of the entire dataset. To train the networks, we
used the Keras deep learning library: we set the loss function to cate-
gorical cross entropy and ran the Adam optimizer (learning
rate= 0.01) (Kingma and Ba, 2014). Training of each network was
performed for three epochs in order to ensure that the process con-
verged to a reasonable state, i.e., the training accuracy was lifted from
the base accuracy of 50% but did not reach an overfitting phase.

For each network n, we computed the average of the test accuracies
of n over the 180 augmented forms (accni) for every instance i in the
labeled dataset if i was not used in training n. Assuming instance i is
correctly labeled, its test accuracy should on average be equal to the
training accuracy of the trained network n (accn). On the other hand,
when instance i is mislabeled, its test accuracy should on average be
equal to the symmetric value of the training accuracy of n about the
base accuracy of 50% (1 - accn). Therefore, if accni is less than the
symmetric value of the training accuracy of n about 50%, i.e., accni less
than 1 - accn, it is very likely that i is mislabeled. Using all 100 networks,
we generated values of accni - (1-accn) per each instance i and used these
values to perform a T-test on whether their mean was less than zero. If
the T-test indicated that an instance was mislabeled, we flipped the
label for that instance. We repeated the process of training 100 net-
works, performing T-tests, and flipping mislabels until no mislabels
were identified. Since 2,528 T-tests were performed in each iteration,
we used the significance level of 10-8 for the T-tests. This significance
level, according to the conservative Bonferroni principle, would not
allow a false flip rate of more than 2.5× 10-5 per iteration.
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2.5. Classification and evaluation

After correcting potential mislabels, we used an ensemble of 50
networks to perform the classification. We trained each network on a
balanced, random sample of 100 deciduous and 100 coniferous in-
stances using the Adam optimizer with a learning rate of 0.01. Like the
mislabel correction procedure, random sampling was performed
without replacement. To produce cross-validated classification ac-
curacies, for each instance in the dataset, we performed classification
according to the average softmax probabilities produced only by the
networks that did not use that instance for training, and validated the
classification against the instance label. We performed the same en-
semble cross validation procedure for both the DSM×4 and the
4× 2D formats. To compare early and late fusion, we performed two
additional experiments. We designed a network for four separate single-
channeled DSMs that included six pairs of convolutional and max
pooling layers (one 3×3 filter per convolutional layer, ReLU activa-
tion units, and 2× 2 pooling windows). We also designed another
network for two double-channeled 2D images (aerial view images were
used for the two channels of one image and side profile views were used
for the two channels of the other image) that included five pairs of
convolutional and max pooling layers (two filters of 3×3×2 per
convolutional layer, ReLU units, and 2×2 pooling windows). For both
of these networks the rest of the layers were identical to the corre-
sponding 2D/DSM network designs presented in Section 2.3(Figs. 1 and
2). The training was run for fifteen epochs for every DSM-based net-
work, but five epochs appeared to be enough for every 2D image-based
network.

To compare the performance of the proposed deep CNN learning
models with the shallow learning methods used in the previous work,
we assembled five features that we believe capture sufficient informa-
tion required for the classification task. For each instance, we retrieved
tree height, crown width, mean intensity of leaf-off points, mean nor-
malized intensity of leaf-on points, and proportion of leaf-on points to
the leaf-off ones. We scaled the values of these features to be between
zero and one across the dataset. We used logistic regression, KNN,
SVMs, LDA, quadradic discriminant analysis (QDA), random forest, and
multi-layer perceptron (two hidden layers of eight and four ReLUs re-
spectively) as the methods to run our shallow learning experiments. For
each of the shallow learning methods, we performed the same ensemble
experiment as we did for the deep learning models to produce com-
parable cross-validated accuracies.

For further experiments on deep learning for conifer/deciduous
classification of LiDAR-represented tree crowns, we used the 4× 2D
format because of the lower computational load. To investigate the
effect of the training data size, we created stratified random subsamples
of our dataset. We subsampled 20%, 40%, …, 100% of the deciduous

and coniferous trees and performed the cross validated classification
procedure described above for each subsampled dataset. We adjusted
the size of resampling instances in proportion to the subsample size,
though the number of ensemble networks was held constant. To
quantify the effect of data augmentation, we measured the accuracies
for when 20, 40, …, 180, 240, 300, and 360 rotations of each instance
were included. We then looked into the effects of the domain para-
meters: we ran the cross validation experiment excluding leaf-off data,
excluding leaf-on data, using non-normalized intensities for leaf-on
data, excluding intensity values (using binary values representing ex-
istence of a point per pixel) and excluding height and crown width
features. When excluding leaf-on and leaf-off data, we decreased the
size of the last two dense layers before the softmax layer to 16 and 8
units respectively to account for the smaller input size. We also in-
spected the correlation between the point density of a crown cloud and
the probability of the softmax output unit associated with the correct
label of the crown cloud to determine how point density affected the
classification accuracy. Lastly, we stratified the classification result to
overstory (dominant and co-dominant) and understory (intermediate
and overtopped) trees to inspect how crown class affected the classifi-
cation performance.

3. Results and discussion

3.1. Mislabel correction

The process of mislabel correction converged after 13 iterations and
increased the number of conifers from 124 to 214 and decreased the
number of deciduous trees from 2404 to 2314 (Fig. 3-a). According to
the original field measurements (Table 1), 7.27% of the trees in RF are
conifers, which is slightly lower than the result after correcting mis-
labels –8.46% conifers. The reason for this slight difference may be the
relative difficulty in segmenting deciduous trees compared to con-
iferous trees due to the variety of crown shapes and the looser, inter-
woven foliage, which creates complicated, difficult-to-distinguish
LiDAR point patterns (Vauhkonen et al., 2012). This effect likely re-
sulted in larger rate of undetected deciduous trees after segmentation
and registration with the field data. In total, the labels for 35 of the
initial 124 (28.22%) conifers and 125 of 2404 (5.20%) initial deciduous
trees were flipped. These unbalanced flip rates concur with the domi-
nant presence of deciduous trees, i.e., if a field deciduous tree is mis-
registered to a LiDAR crown, the crown is likely another deciduous tree
(yielding no mislabel) while this is not the case for a mis-registered field
conifer. Over the 13 iterations of the mislabel correction procedure, the
average training accuracy of the 100 networks started at 67.1% and
plateaued at 83.6% (Fig. 3-b). This trend suggests that a number of
highly likely (controlled by the T-tests) mislabels were corrected,

Fig. 3. (a) Rates of flip for coniferous and deciduous trees over the 13 iterations of the mislable correction process; and (b) average training accuracy of 100 networks
over the 13 iterations.
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improving the model accuracy, while less likely mislabels were left
unchanged, resulting in the accuracy plateau and prohibition of over-
fitting. Overall, the mislabel correction process produced more realistic
labels by increasing the number of coniferous trees from 4.90% to
8.46% within the 2528 segmented tree crowns.

3.2. Classification accuracy

The cross-validated accuracies associated with the shallow learning
methods for conifers ranged from 78.5 ± 5.5% (random forest) to
81.3 ± 5.2% (KNN) and for deciduous trees ranged from 75.8 ± 1.8%
(QDA) to 87.4 ± 1.4% (random forest) at a 95% confidence level
(Fig. 4). While the accuracies for conifers were not significantly dif-
ferent, the accuracies for deciduous trees showed significant differences
across the shallow learning methods. Logistic regression, LDA, and QDA
showed relatively lower accuracies, suggesting that the strong biases in
their internal modeling structure compared to the rest of the methods
caused them not to fit to the data as effectively.

For the deep learning methods, the accuracies associated with the
DSM×4 representation were 80.4 ± 5.3% for conifers and
90.1 ± 1.3% for deciduous trees. The equivalent classification ac-
curacies associated with the 4×2D representation were 82.7 ± 5.1%
and 90.2 ± 1.3%, respectively for coniferous and deciduous trees
(Fig. 4). The slight, insignificant higher accuracies associated with the
4× 2D representation is likely due to the fact that we used this format
for the mislabel correction process, which might have negligibly biased
the data. The experiments with the four single-channeled DSMs and two
double-channeled 2D images formats showed insignificant differences
in the accuracies. This observation indicates that the designed re-
presentations include sufficient information from the raw data such that
any reasonable network architecture may draw the required informa-
tion for classification.

As mentioned, the DSM×4 format more closely resembles 3D data,
which together with the richer early-fused network, have the potential
to achieve higher classification accuracies. However, the 4×2D format
with a late-fused network could achieve similar accuracies.

The deep learning methods showed slightly better classification
accuracies for conifers (by up to 5%), although they were not statisti-
cally significant. The reason is likely the small size of the original
conifer sample, rendering insufficient statistical power. However, for
the deciduous trees, the deep learning methods showed statistically
significant better accuracies (by 3–14%) (Fig. 4). As the deep learning
methods process the entire information rather than a set of manually
designed features, they can automatically and objectively derive the
useful information and hence provide the ground for better classifica-
tion.

Samples of correct and incorrect classifications using the 4x2D
format for understory and overstory trees are visualized in Fig. 5 and
Fig. 6. As shown, no clear pattern to distinguish conifer from deciduous
is present.

3.3. Effect of training data size on the classification

Increasing the size of training data improved the classification ac-
curacies. For deciduous trees the accuracy plateaued when using only
40% of the original dataset (~925 deciduous and ~86 coniferous trees)
but for coniferous trees, the accuracy did not plateau even when all of
the 214 training instances were included (Fig. 7). This observation
suggests that accuracy can be increased simply by collecting more
conifer training instances.

3.4. Effect of data augmentation on classification

Including a greater number of rotational augmentations per instance

Fig. 4. Classification accuracy for different shallow and deep learning methods.
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slightly improved the classification accuracies. Using only 20 rotations
per instance resulted in 73.8% accuracy for coniferous trees and 87.7%
accuracy for deciduous trees, which are lower than when using the
original 180 rotations. The improvement in classification plateaued at
~60 rotations for deciduous trees and ~150 rotations for coniferous
trees (Fig. 8). Having more deciduous trees likely resulted in a smaller
number of rotations/augmentations to be enough for the classification
task. Although a higher number of rotations could compensate for the
small number of coniferous training instances to some extent, aug-
mentations are unlikely to match the classification quality provided by
a higher number of real training instances.

3.5. Effect of domain data on classification

Excluding the leaf-off data resulted in a remarkable decrease in
classification accuracy for the conifers (from 82.7% to 61.2%) and a
small decrease in accuracy for deciduous trees (from 90.2% to 89.6%),
while excluding the leaf-on data resulted in a minor decrease in accu-
racy for conifers (from 82.7% to 81.6%) and a negligible increase in
accuracy for deciduous trees (from 90.2% to 90.5%) (Fig. 5). This ob-
servation indicates that, despite the much lower point density, the leaf-
off data provided the most useful features for the classification task,
which concurs with the result of the previous work (Kim et al., 2011;
Reitberger et al., 2008). As conifers have perennial foliage, the leaf-off
LiDAR points could represent their crown shapes even at a low density
while the deciduous trees may only be represented by a few random
LiDAR points returning from their defoliated branches. The dense leaf-

on data could on the other hand represent the crown shapes for both
conifers and deciduous trees and was used here for segmentation of the
individual tree crowns. Attempting to distinguish the crown shapes of
deciduous and coniferous trees as provided by the leaf-on data is likely
less efficient than distinguishing between a random point pattern (a
deciduous tree) and a crown-like shape (a coniferous tree) as provided
by the leaf-off data. However, for identifying species, which is a more
complicated classification task and a subject of future work, the high-
density leaf-on data may be more useful.

Using binary values instead of the intensity values resulted in a de-
crease in classification accuracy for conifers (from 82.7% to 69.2%) and
only a negligible increase in accuracy for deciduous trees (from 90.2% to
91.1%) (Fig. 9). Using the normalized intensity values for the leaf-on data
(when excluding the leaf-off data) compared with using non-normalized
values seemed to make minor, insignificant improvements in the classi-
fication accuracies for conifers (from 60.3% to 61.2%) and deciduous
trees (from 88.9% to 89.6%) (Fig. 9). Although LiDAR intensity values
were useful for the classification, normalizing the intensity values yielded
no significant improvement. Excluding the tree height and crown width
features yielded slight, insignificant increase in classification accuracy of
conifers (from 82.7% to 83.4%) and a slightly stronger decrease in the
accuracy of deciduous trees (from 90.2% to 88.3%) (Fig. 9). This ob-
servation indicates that the crown dimension features did not have a
strong effect in distinguishing between coniferous and deciduous trees.
The caveats however are that (i) the crown width was partially captured
in the aerial views of the 4x2D format; and (ii) the closedness of the forest
canopy resulted in smaller crown footprints of the trees to be captured via

Fig. 5. Sample visualization of correct and incorrect classifications for overstory trees.
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LiDAR irrespective of the tree type. Bearing these caveats, a similar deep
learning method is still likely effective for area/patch-based (as opposed
to individual crown-based) conifer/deciduous classification task in nat-
ural, closed-canopy forests.

Some of the domain data such as the leaf-off data and the intensity
values appeared to be important in the classification task, which is

evident in the changes in the accuracy for conifers (Fig. 9). However, as
can be observed in only slight changes in the accuracy of deciduous
trees, abundance of training data likely compensated for the absence of
a subset of the important domain data.

3.6. Effects of crown class and point density on classification

For overstory trees, the cross validated classification accuracy was
92.1 ± 4.7% for conifers and 87.2 ± 2.2% for deciduous trees. The
classification accuracy for understory trees was 69.0 ± 9.8% for con-
ifers and 92.1 ± 1.4% for deciduous trees (Fig. 10). The crown of an
understory tree is typically captured only partially by airborne LiDAR
(Fig. 6), as it is covered by the overstory trees. The partial shapes of
these crowns decrease the classification power, likely yielding the
correlated accuracies to become easily biased by the abundance of
deciduous instances compared with coniferous instances. In contrast,
the crowns of overstory trees are captured more completely (Fig. 5)
allowing for a more powerful classification. Lastly, we could not iden-
tify any significant correlation between point density (neither leaf-off
nor leaf-on) and the classification accuracy (neither for overstory nor
for understory trees). This observation does not concur with previous
work reporting a positive correlation between accuracy and point
density (Li et al., 2013). The reason is likely that the classification task
is primarily driven by the leaf-off data, the point density range of which
is too small (0.1–6.0 pt/m2 for the middle 95%) to surface any effect.
Moreover, the partial crowns captured may feature high point densities
but are not easy to classify due to their incomplete shapes (Fig. 6).

Fig. 6. Sample visualization of correct and incorrect classifications for understory trees.

Fig. 7. Classification accuracies measured against the size of the training data.
Each symbol in the diagram represents the average of 20 observations.
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4. Conclusions

Airborne LiDAR point clouds representing individual trees can be
used to predict tree attributes such as tree type. Previous work
exploited shallow learning techniques that require the engineering of
useful features by a human expert. In this work, we eliminated the need
for feature engineering by a human expert by using deep learning CNNs
to classify crown point clouds as coniferous or deciduous trees. We
segmented individual trees from the LiDAR point clouds and registered
them with field-surveyed trees to create training data. We designed two
different discrete representations of a crown’s 3D point cloud to enable
its processing by a deep CNN. We benchmarked accuracy of the deep
learning against multiple shallow learning methods. We also in-
vestigated the effect of training data preparation, CNN design, as well
as domain data on the accuracy of the classification.

In addition to automatic derivation of the features, the deep CNN
learning methods showed improved classification accuracies compared
with shallow learning methods. Our investigation of the coniferous/
deciduous deep learning classification showed that a set of 2D views/

profiles of a 3D point cloud are not only more efficient to be processed
but also can yield similar accuracies compared with bulkier 2.5D (or
even 3D) representations. The results presented indicate that deep
learning can effectively and efficiently be used for classifying tree type
based on airborne LiDAR point clouds representing individual tree
crowns, which is a step forward to operational tree-level remote
quantification of large-scale forests. Although further experiments using
richer datasets and for more complicated prediction tasks (e.g., species
classification) are required, deep learning provides the feasibility of
automatic extraction of optimal features toward the prediction task.
This unique deep learning characteristic brings about the potentials for
successful prediction tasks in different domains such as remote sensing
and biomedical image analysis, where the data modalities are not
friendly to the human perceptual system and, given the large amount of
information contained in the data, have likely operated using sub-
optimal human-designed features.

Fig. 8. Classification accuracies measured against the number of rotational
augmentations per instance.

Fig. 9. Classification accuracy when excluding domain data.

Fig. 10. Classification accuracy of overstory and understory trees.
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