
Automatically configuring ACO using multilevel ParamILS to solve
transportation planning problems with underlying weighted networks

Pengpeng Lin a,n, Jun Zhang a, Marco A. Contreras b

a Department of Computer Science, University of Kentucky, Lexington, KY 40506-0633, USA
b Department of Forestry, University of Kentucky, Lexington, KY 40546-0073, USA

a r t i c l e i n f o

Article history:
Received 12 October 2013
Received in revised form
30 October 2014
Accepted 30 October 2014
Available online 11 November 2014

Keywords:
ACO Metaheuristics
Graph coarsening
Multilevel technique
Automatic configuration
Online tuning

a b s t r a c t

Configuring parameter settings for ant colony optimisation (ACO) based algorithms is a challenging and
time consuming task, because it usually requires evaluating a large number of parameter combinations
to find the most appropriate setting. In this study, a multilevel ParamILS (MParamILS) technique, that
combines a graph coarsening method and the ParamILS framework, has been developed for configuring
ACO algorithms to solve transportation planning problems with underlying weighted networks. The
essential idea is to first use the graph coarsening method to recursively produce a set of increasingly
coarser level problems from the original problem, and then apply ParamILS sequentially to the coarser
level problems to select high-quality settings from a parameter combination domain. From the coarsest
level to the finest (original) level problem, the parameter domain is refined by removing the low-quality
settings identified by ParamILS. The size of the combination domain continues to decrease, resulting in
fewer number of parameter combinations evaluated at finer level problems, hence the computing time is
reduced. The performance of MParamILS was compared with ParamILS. Experimental results showed
that MParamILS matches ParamILS in solution quality with significant reduction in computing time for
all test cases.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The ACO framework, inspired by the foraging behaviour of ant
colonies, is one of the most successful swarm intelligence techniques
in solving combinatorial optimisation problems [8,9]. It was intro-
duced in the 90s by Dorigo et al. [15,14] and was first designed to solve
the travelling salesman problem (TSP) [35,6]. Thereafter, the ACO
framework has been applied extensively to a variety of real world
applications including dynamic routing problems in mobile ad hoc
networks [17,13,31,41], stochastic optimisation problems [3,22,11], and
multi-objective optimisation problems [34,29]. These studies have
shown that ACO-based algorithms can obtain high-quality solutions
in a reasonable amount of time.

Similar to other evolutionary algorithms such as genetic algorithm
and particle swarm optimisation, the performance of ACO-based
algorithms is highly dependent on the values of their parameters.
Without proper parameter settings, ACO-based algorithms can either
converge very slowly or stagnate in local optimal solutions [16,32,21].
However, setting parameters for ACO algorithms is a difficult task
because users have to find a balance between diversification and

intensification. [18,14]. On one hand, when choosing parameter
values that emphasise diversification, the final solution quality is
often better, but more computing time is required. On the other hand,
when choosing parameter values that emphasise intensification, ACO
algorithms converge quickly but often to sub-optimal solutions.

Traditionally, ACO parameters were configured by manually
changing one parameter at the time while keeping other para-
meters constant [21], which was similar to the Coordinate Search.
Such a parameter tuning method was time consuming and prone
to human errors [37]. In addition, the performance of the Coordi-
nate Search is highly affected by the initial search point and step
size. Without a proper initial setting, the Coordinate Search may
converge very slowly, and often obtain local optimal solutions [39].

Automatic parameter configuration techniques have been developed
to improve the performance of the manual parameter configurations
[33]. Broadly, the automatic configuration techniques are categorised
into “online”, which modifies an algorithm's parameter values while
solving a problem instance, and “offline”, which adjusts parameter
values before the target algorithm is actually deployed [32,19,10]. For
example, Khichane et al. proposed two online frameworks (named GPL
and DPL) that automatically adapted parameters for ACO algorithms at
runtime [27]. The idea behind the frameworks resembled the pher-
omone update mechanism of ACO and the experiments showed
positive results. However, discrete sets of parameters must be known
a priori, and they were assumed to contain good values which should

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/swevo

Swarm and Evolutionary Computation

http://dx.doi.org/10.1016/j.swevo.2014.10.006
2210-6502/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail addresses: M.Lin@uky.edu (P. Lin), jzhang@cs.uky.edu (J. Zhang),

marco.contreras@uky.edu (M.A. Contreras).

Swarm and Evolutionary Computation 20 (2015) 48–57

www.sciencedirect.com/science/journal/22106502
www.elsevier.com/locate/swevo
http://dx.doi.org/10.1016/j.swevo.2014.10.006
http://dx.doi.org/10.1016/j.swevo.2014.10.006
http://dx.doi.org/10.1016/j.swevo.2014.10.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2014.10.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2014.10.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2014.10.006&domain=pdf
mailto:M.Lin@uky.edu
mailto:jzhang@cs.uky.edu
mailto:marco.contreras@uky.edu
http://dx.doi.org/10.1016/j.swevo.2014.10.006

allow ACO to find good results. This requirement is often difficult to
meet for parameters with large value ranges. Birattari et al. [4,2,5]
presented the iterated F-Race (I/F-Race) method for offline algorithm
configurations. This method consisted of sampling parameter values
from a probability distribution, selecting best parameter settings
according to results of F-Race, and updating the probability distribution
to bias the sampling towards good parameter values. Although the
method was used to automatically tune parameters, I/F-Race required a
well defined probability distribution that is usually difficult to deter-
mine if a limited set of instances are available [4], and the adoption of
full factorial decision was impractical and computationally prohibitive
for a large number of parameter configurations [2]. Manuel et al. [30]
proposed two offline parameter variation strategies called “delta” and
“switch”, which were used for changing parameter values in the I/F-
Race. In the delta strategy, parameter values first increased by a certain
amount at each algorithm iteration, and then decreased when the
values exceed a maximum allowable range. In the switch strategy,
parameter values were either randomly selected from a value range or
kept constant at each algorithm iteration. The experimental results
showed that the performance of the automatic configuration method
was able to match that obtained by the parameter variation strategies
designed by a human expert.

To develop a more robust and generic parameter configuration
technique that can configure ACO-based algorithms to solve large-
scale transportation planning problems, we present the design,
implementation and testing of a multilevel online parameter
configuration framework (MParamILS), which combines a graph
coarsening technique and the ParamILS framework. Compared
with the aforementioned methods, MParamILS is more robust
because it does not rely on a well defined probability distribution
or require predetermined good parameter value sets. Moreover, it
can be potentially generalised to other problem domains and
optimisation algorithms. Then, instead of using ParamILS, other
parameter configuration methods can be used to solve a different
kind of problems (such as those presented in [3,22,11]).

The fundamental idea of the proposed multilevel framework is
to configure ACO algorithms to solve the original problem, which
might be computationally expensive, using a set of increasingly
coarser level problems of which the computational cost is cheaper.
The graph coarsening technique is recursively applied to the
original problem, from which the general structure and certain
edge properties are inherited by the resulted coarser level pro-
blems. Hence, coarser level problems can be used to evaluate the
quality of parameter combinations for the original problem. To test
the performance, we used the MAX-MIN ant system (MMAS) [36]
in the experiments. MParamILS was compared with ParamILS in
terms of solution quality and computing time using five test cases.

2. Background

2.1. Algorithm configuration problem

The algorithm configuration problem is comprised of a set of
input data, a given target algorithm A, and a parameter domain
Θ¼Θ1 �⋯�Θk, where Θi represents a parameter value set. Let

Að θ
!

Þ be an instantiation of the target algorithm with a parameter

combination θ
!

AΘ, O
Að θ
!

Þ
the objective function that measures

the observed cost for running Að θ
!

Þ, and EðO
Að θ
!

Þ
Þ a statistical

measurement such as the expectation, median, or norm. The
objective of the algorithm configuration problem is to find the
parameter combinations ΘnDΘ such that the target algorithm
achieves the best possible performance on any input data that

minimises EðO
Að θ
!

Þ
Þ, 8 θ

!
AΘn. Mathematically, the objective of the

algorithm configuration problem is described as

Θn ¼ f θ
!

: arg min EðO
Að θ
!

Þ
Þ; θ
!

AΘg ð1Þ

Accordingly, algorithms that solve the algorithm configuration
problem are called configurators, and algorithms to be configured
are called target algorithms.

2.2. ParamILS framework

ParamILS framework is a state of the art procedure to solve the
algorithm configuration problem [25]. To configure parameters,
ParamILS makes a sequence of algorithm runs for each parameter
combination. It, then, selects the best one based on the statistical
information calculated from obtained objective values.

In order to properly compare between two parameter combi-
nations, sufficient number of algorithm runs are required for
calculating the necessary statistical information. Due to the
stochastic nature of ACO algorithms, a high-quality or the optimal
solution may be obtained by a low-quality parameter setting
purely by chance. Therefore, the expected objective function value
is used to assess qualities of parameter combinations.

As the expected values are calculated with the number of
algorithm runs, two parameter combinations are comparable only
when they have been evaluated the same number of times. Follow-
ing, we formally state in Definition 1 that a parameter combination

θ
!

1 dominates θ
!

2 if the expected objective value of θ
!

1 is better

than that of θ
!

2 for the same number of algorithm runs:

Definition 1 (Domination). θ
!

1 dominates θ
!

2 if Nð θ
!

1ÞZNð θ
!

2Þ
and Eð θ

!
1ÞoEð θ

!
2Þ, where Nð θ

!
1Þ ¼ lengthðR

θ
!

1

Þ.
In this work, Definition 1 is used to modify the original

ParamILS framework for configuring ACO algorithms.

3. Methods

3.1. Multilevel parameter configuration framework

The proposed multilevel framework (Fig. 1) consists of a target
algorithm for parameter configuration, a problem that is coar-
sened into a set of increasingly coarser level problems, a para-
meter domain that contains possible parameter Combinations, and
a configurator that runs the target algorithm to evaluate the
qualities of parameter combinations in the domain.

In this study, the ACO-based algorithms developed for trans-
portation problems with underlying weighted networks are the
target algorithms, and the ParamILS is used as the configurator.
The qualities of parameter combinations in the parameter domain
are evaluated by running the target algorithm. Based on the
obtained objective function values, low-quality parameter combi-
nations can be identified and removed from the domain. This
evaluation process is applied first to the coarsest level problem,
and then applied subsequently to the next coarser level problem,
until to the finest level (original) problem. Because of the smaller
sizes of coarser level problems, evaluating parameter combina-
tions on a coarser level problem is expected to finish quicker than
that on the original problem. The size of the domain decreases as
the low-quality parameter combinations are constantly being
eliminated. As a result, the required computing time is reduced
due to fewer number of parameter combinations having to be
evaluated at finer level problems. After the parameter evaluation
process on the coarser level problems, the remaining parameter

P. Lin et al. / Swarm and Evolutionary Computation 20 (2015) 48–57 49

combinations in the domain at the finest level are considered
high-quality and used to solve the original problem.

3.2. Generating coarser level problems

For combinatorial optimisation problems modelled with weighted
networks, graph coarsening techniques can be naturally used to construct
coarser level problems. This is because the underlying networks can be
easily represented with graphs. More importantly, given a graph
G0 ¼ ðV0; E0Þ, graph coarsening techniques can construct a sequence of
graphs G1;…;GL, where Gi ¼ ðVi; EiÞ is a coarse approximation of Gi�1

such that a solution of a given problem for Gi can be “efficiently”
extended to that for Gi�1 and vice versa [38,40]. This functionality
implies that the obtained coarser level problemsmay be used to evaluate
qualities of parameter settings for the finer level problems as a result of
the similar structures and edgeweight distributions. To produce a coarser
level graph, the coarsening technique implemented in this work selects
and collapses the edges of a finer level graph (Algorithms 1 and 2). Thus,
the next level coarser graph Giþ1 is constructed from Gi through a
process of edge contractions and node aggregations.

The edges selected for contractions are the matching edges [26,28]
of which no two edges are incident on the same node (such as the
edges encompassed with dashed ovals in Gi in Fig. 2). Hence,
collapsing the matching edges results in each node in the finer level
graph being mapped to an unique node in the resulted coarser level
graph. There are many existing techniques for finding a maximum

matching in a graph [26,20,7,42]. We implement a matching algorithm
(Algorithm 1) modified from a randomised algorithm proposed in
[26], which the complexity is proportional to the number of edges
OðjEjÞ [23]. A maximum matching is found by visiting every node in a
finer graph. When an unmatched node u is visited, the algorithm
checks whether it has an adjacent node that has not been matched. If
such a node vi exists, edgeðu; viÞ is included in thematching and nodes
u and vi are marked as matched. Otherwise, the node u remains
unmatched and the algorithm continues to visit the next unvisited
node. If u is adjacent to more than one unmatched node, the algorithm
is designed to include the incident edge with the largest weight into
the matching. This design is particularly suitable for minimisation
problems, because edges with large weights are unlikely to be part of
good solutions. In contrast, for the maximisation problems, edges with
small weights should be considered for the contraction.

After a matching is found from a finer level graph, the selected
edges are collapsed to generate a coarser level graph (Algorithm
2). The incident nodes of matching edges are aggregated to form
coarser level nodes (an example is shown in Fig. 2). Those nodes
that are not incident on the matching edges are directly copied to
the coarser graph.

Algorithm 1. Finding matching edges algorithm.

Q≔all nodes except source and destination nodes;
QE¼ϕ;

begin
while Q has unvisited nodes do
visit an unvisited node u in Q

if u has been matched then
j continue to next while iteration
end
for adjcant unmatched nodes v ofu do
j find viAvjweightðu; viÞ is maximum
end
make vertices u and vi as “matched”
add edgeðu; viÞ to QE

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end
return ðQEÞ

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end

Fig. 1. Multilevel parameter configuration framework.

Gi Gi+1

1
2

3

4 5

6

7

w1

w2

w3

w4

w5

w6
w7

w8

w9

w10

6

1_4

3_2

5_7

W2+W6+W3

w8

W
7+W

5

Fig. 2. Edge contraction process. A finer level graph Gi is coarsened by collapsing
the matching edges (encompassed with dashed ovals) to construct a coarser level
graph Giþ1. The incident nodes on the matching edges (Nodes 1, 2, 3, 4, 5, 7 in Gi)
are aggregated into coarser level nodes (Nodes 1_4, 3_2, 5_7 in Giþ1). The weights
on the jointed finer level edges (E5;3 and E5;2, E3;1 and E3;4, E1;3 and E1;2) are
summed to form coarser level edge weights (W2þW6, W2þW6þW3).

P. Lin et al. / Swarm and Evolutionary Computation 20 (2015) 48–5750

Algorithm 2. Graph coarsening algorithm.

QE≔matching edges

begin
for edgeðu; vÞAQE do
u_v (aggregate u and v

if u; v are both adjacent to a node k then
j weightðu_v; kÞ≔weightðu; kÞþweightðv; kÞ
end

�
�
�
�
�
�
�
�
�

end

�
�
�
�
�
�
�
�
�
�
�
�
�
�

end

While matching edges are collapsed together in the coarsening
process, edges that both connect to the aggregated nodes and
incident to the same node (such as E5;3 and E5;2 in Gi in Fig. 2) are
jointed together to form coarser level edges. Correspondingly, the
weights of two jointed edges are combined to give a new weight
to the resulted coarser level edge (i.e., in Fig. 2, the weight
W7þW5 obtained by combining weights on E5;3 and E5;2). This
approach is adopted from [26], in which adjacent nodes to a node
u1 in a graph is defined as

Adjðu1Þ ¼ ðfMap½x�jxAAdjðv1Þg [fMap½x�jxAAdjðv2ÞgÞ�fu1g

where v1 and v2 are the finer level nodes aggregated to obtain the
coarser level node u1, and Map½x� maps a finer level node to a
coarser level node such that Map½v1� ¼Map½v2� ¼ u1. The combined
weight of an edge ðu1;u2Þ is given by

wðu1;u2Þ ¼∑
x
fwðv1; xÞjMap½x� ¼ u1gþ∑

x
fwðv2; xÞjMap½x� ¼ u2g:

3.3. Modifying ParamILS framework

Algorithm 3. Objective(θ
!

, N, bound). R½i� denotes ith ACO run.

Input (Parameter Set θ
!

, number of runs: N, bound)

Output (the expected objective value Eð θ
!

Þ)
begin

runtime’number of algorithm runs for θ
!

sum’sum of objective values in R
θ
!½1�;…;R

θ
!½runtime�

if runtimeZN then
jreturn ðsum=runtimeÞ
end
foreach i¼ runtime to N do

Oi’objective from a newly executed run of Að θ
!

Þ
sum’sumþOi

runtime’runtimeþ1
R
θ
!½i�’Oi

==terminate early for bad parameter set

if ðsum=NÞ4bound then
jreturnðWorstPossibleObjectiveÞ
end

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end
returnðsum=runtimeÞ

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end

A modified ParamILS framework (Algorithms 3–5) is implemented
according to Definition 1 to configure ACO, where procedure
Objective (Algorithm 3) evaluates a parameter combination and
returns the expected objective value. For the evaluated parameter
combinations, a global cache is used to archive their evaluation
information, which contains the number of times the parameter
combination has been evaluated (runtime), the best objective value
obtained, and the sum of all the obtained objective values (sum).
Objective procedure takes an integer value (N), which is the
number algorithm runs required for the evaluation, and a thresh-
old bound, which is used to stop the evaluation process for low-
quality parameter combinations. Before evaluating a parameter
combination θ

!
, its runtime is extracted from the global cache to

compare with N. If θ
!

has already been evaluated N times
(i.e., runtimeZN), it will not be evaluated again and Objective
simply returns the expected objective value calculated based on
the evaluation information. Otherwise, θ

!
is evaluated until the

number of evaluations equals N or the parameter combination is
considered as low-quality. This is determined when the expected
objective value exceeds the bound. Then, Objective stops evaluating
the parameter combination further and returns a worst possible
objective value (i.e., a big number for minimisation problems) as
an indication of bad quality. Note that a proper bound value can
save computing time by avoiding evaluating low-quality para-
meter combinations. An improper bound value (such as too small
or too large), however, can either cause a good parameter
combination being falsely labelled as low-quality or a bad para-
meter combination not being identified. In this study, based on the
preliminary experimental results, bound is set to be twice as big as
the best expected objective value found. However, we emphasise
that this setting is by no means optimal or universal. For a
different set of testing problems, a new bound setting may be
more appropriate to achieve good results.

Algorithm 4. Betterð θ!1; θ
!

2Þ.

Input(Parameter Set θ
!

1, Parameter Set θ
!

2)

Output(true if θ
!

1 dominates θ
!

2, false otherwise)
begin

if θ
!

1 ¼ ¼ θ
!

2 then
j returnðtrueÞ
end

if Nð θ
!

1ÞrNð θ
!

2Þ then
j N’Nð θ

!
1Þ

else

j N’Nð θ
!

2Þ
end
while true do
N’Nþ1

Objectiveð θ!1;N; boundÞ
Objectiveð θ

!
2;N; boundÞ

if Dominateð θ
!

1; θ
!

2Þ then
j return true
end

if Dominateð θ
!

2; θ
!

1Þ then
jreturnðfalseÞ
end

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end

Procedure: Dominateð θ
!

1; θ
!

2Þ

P. Lin et al. / Swarm and Evolutionary Computation 20 (2015) 48–57 51

begin

if Nð θ
!

1ÞoNð θ
!

2Þ then
j returnðfalseÞ
else
returnð
Objectiveð θ

!
1;Nð θ

!
2Þ; boundÞr

Objectiveð θ
!

2;Nð θ
!

2Þ; boundÞÞ

�
�
�
�
�
�
�
�

end

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end

Procedure better (Algorithm 4) compares two parameter combina-
tions θ

!
1; θ
!

2. It returns true if θ
!

1 dominates θ
!

2 and false otherwise.
The Objective procedure and an auxiliary procedure Dominate are used
to make the comparison. To determine which parameter combination
is superior, θ

!
1 and θ

!
2 have to be evaluated for the same number of

times. If both parameter combinations produce the same expected
objective value,better will continue the evaluation process until one of
them dominates the other.

Algorithm 5. ParamILSðΘ; θ
!

start ; r; sÞ; Nbhð θ
!

Þ: returns a neigh-
bouring parameter combination;R

θ
!: denotes for the evaluation

information of θ
!

;getbest(R
θ
!): returns the best objective value

obtained;IterativeLocalImprovement: iteratively compares the nei-
ghbouring parameter combination with the current best one.

Output(Best parameter setting, parameter combination set)
begin

θ
!

best ¼ θ
!

start

foreach i¼ 1 to r do

θ
!

’random θ
!

AΘ

if betterð θ!; θ
!

bestÞ then θ
!

best’ θ
!

�
�
�
�
�
�

end

θ
!

best’IterativeLocalImprovementð θ
!

bestÞ
while NotTerminationCriterion do

θ
!

’ θ
!

best

== parameter local perturbation

foreach j¼ 1 to s do

j θ
!

’random θ
!0

ANbhð θ
!

Þ
end

θ
!

’IterativeLocalImprovementð θ!Þ
// parameter acceptance

if better ð θ
!

; θ
!

bestÞ then θ
!

best’ θ
!

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end
O
θ
!

best

’getbestðR
θ
!

best

Þ

E
θ
!

best

’EðR
θ
!

best

Þ== expected objective value for

θ
!

best

forall the evaluated θ
!

AΘ do
if getbestðR

θ
!ÞrO

θ
!

best

and EðR
θ
!ÞoBF � E

θ
!

best

then

j add θ
!

to Θselected

end

�
�
�
�
�
�
�
�
�

end

returnðΘselected; θ
!

bestÞ

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end

Procedure: IterativeLocalImprovementð θ
!

Þ
begin

while θ
!0

a θ
!

do

θ
!0

’ θ
!

foreach θ
!

″ANbhð θ
!0

Þ in randomized order do

if betterð θ!″; θ
!0

Þ then θ
!

’ θ
!

″
break

�
�
�
�
�

end

�
�
�
�
�
�
�
�
�
�
�
�
�
�

end

returnð θ
!

Þ

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

endProcedure: Nbhð θ
!

Þ
begin

visit each θ
!0

A θ
!

in randomized order

if θ
!0

differs from θ
!

in one parameter then returnð θ!
0
Þ

�
�
�
�
�
�

end

The main procedure of ParamILS (Algorithm 5) uses better, and
other two auxiliary procedures (Nbh and IterativeLocalImprovement) to
select high-quality parameter combinations. Nbh takes a parameter
combination and randomly selects one of its neighbouring parameter
combinations that differ in one parameter value. IterativeLocalImprove-
ment uses Nbh to compare the current best parameter combination

θ
!

best with the neighbouring parameter combinations. If a neighbour-

ing parameter combination is found to be better, it replaces θ
!

best and
becomes the new best parameter combination. IterativeLocalImprove-
ment continually refines the best parameter combination until a
dominating one, with no better neighbours can be found, is obtained.

ParamILS takes two parameters: r, which is the number of attempts to
find a better parameter combination than θ

!
start at the beginning, and s,

which is number of parameter neighbouring searches (IterativeLoca-

Table 1
Tested methods, parameter settings, and running environment.

Method Description Parameter settings Implementation OS

Exhaustive Target ACO
runs 10
times for
every
parameter
setting to
obtain the
best
solution.

αA ½0;0:05;0:1;…;0:95;1�,
βA ½0;0:05;0:1;…;0:95;1�,
ρA ½0;0:1;0:2;…;0:9;1�,
jΘj ¼ 4000, Max
iteration¼10,000, Max
pheromone¼0.01, Min
pheromone¼0.00001.

Divide Θ into 10
partitions and
use 10
processors to
run GuidedACO
with each
parameter
combination
partition
simultaneously.

Cþþ ,
Linux.

ParamILS ParamILS
configures
parameter
according
to solution
quality.

Same ACO settings as
Exhaustive, Number of
iterations: 100, Local
sÂarch r¼10, Perturbation
s¼3, Initial best parameter
Setting:
(α¼ 0:5; β¼ 0:5; ρ¼ 0:5).

Parameter
settings in Θ is
sequentially
configured and
ParamILS stops
after 100
iterations. Best
solution is
obtained during
parameter
configuration.

Cþþ ,
Linux.

MParamILS Same ACO settings as
Exhaustive, Four level
problems: Level 0 (original
problem), Level 1 (first
coarser), Level 2 (second
coarser), Level 3
(coarsest).

Cþþ ,
Linux

P. Lin et al. / Swarm and Evolutionary Computation 20 (2015) 48–5752

lImprovement). The values of the two parameters affect the overall
computing time and final solution quality. In the experiments, r was
set to 10, swas set to the number of parameters being configured (α;β;ρ
for ACO), and θ

!
start was set to α¼ 0:5;β¼ 0:5;ρ¼ 0:5. ParamILS

iteratively evaluates parameter combinations. Meanwhile, the evaluation
information is archived and updated. In the end, a set of good parameter
combinations are selected from evaluated parameter combinations
according to the evaluation information. A parameter combination is
considered good if its best objective value obtained is no worse than the
one obtained by θ

!
best and their expected objective value is less than

E
θ
!

best

times a boundary factor (BF):

Definition 2 (Selecting good parameter combinations). A para-
meter combination θ

!
is considered good if getbestðR

θ
!Þr

getbestðR
θ
!

best

Þ and EðR
θ
!ÞoBF � EðR

θ
!

best

Þ, where BF is an integer

scaler and getbestðR
θ
!Þ is a function that returns the best objective

value obtained from evaluating θ
!

.

Similar to the bound setting in Algorithm 4, based on the
preliminary experimental results, the boundary factor was set to
2 in the implementation. Time complexity of ParamILS depends on
the number of parameter combinations to be evaluated. The
convergence of ParamILS is proven in [25], where the probability

of finding the optimal parameter configuration θ
!n

approaches
one as number of parameter combination searches goes to infinity.

3.4. Multilevel ParamILS framework

The Multilevel ParamILS framework (Algorithm 6) combines
the above described graph coarsening algorithm and ParamILS.
The graph coarsening algorithm coarsens a problem G into a set of
increasingly coarser level problems G0;G1;…;Gn. ParamILS is first
applied to the coarsest problem (Gn) with a start parameter
combination. It selects high-quality parameter combinations from
a parameter combination domainΘ and the identified low-quality
parameter combinations are discarded. Next, ParamILS is applied
to the second coarsest level problem (Gn�1) and uses the best
parameter combination selected from the coarsest level problem
as the start parameter combination. It again selects high-quality
parameter combinations, removes low-quality ones from the Θ,
and possibly obtains a new best parameter combination. Subse-
quently, this process continues to the next level coarser problem
until ParamILS is applied to the finest level problem G0 (original
problem), resulting in a significant reduction in size of theΘ at the
finest level. Consequently, computing time is greatly saved in that
(1) identifying and eliminating parameter combinations on coarser
level problems is faster than that on the original problem, (2) the
target algorithm (ACO) is expected to converge faster using
selected high-quality parameter combinations.

Algorithm 6. Multilevel ParamILS framework(Θ; θ
!

start ;D).

Input(Θ; θ
!

start ; ProblemG)
Output(good parameter combinations set, best solution)
begin
ðGn;…;G03DÞ’obtain coarse problems from D

foreach i¼ n to 0 do

// update domain Θ; obtain θ
!

best

ðΘ; θ
!

bestÞ’ParamILSðΘ; θ
!

startGiÞ
θ
!

start’ θ
!

best

�
�
�
�
�
�
�
�
�

endreturnðΘ; bestsolutionÞ

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

end

4. Implementation and experiment setup

All the algorithms and procedures introduced in this study
were implemented using Cþþ and uploaded to the Lipscomb
High Performance Computing Cluster (HPC) supported and main-
tained by the University of Kentucky Center for Computational
Science. All programs were executed on the computing nodes of
HPC: Dual Intel E5-2670 of 8 Cores at 2.6 GHz with 64 GB of
1600 MHz RAM and Linux Red Hat OS. To test for performance,
MParamILS was compared with an Exhaustive method and the
ParamILS (Table 1). The MMAS [36] was used as the target
algorithm and the objective was to configure its three main
parameters: α that controls relative importance of pheromone
information, β that controls relative importance of heuristic
information, and ρ which is the pheromone evaporation rate used
to prevent ACO from converging to local optimal or reaching
premature stagnation. The value ranges of the three parameters
were confined to [0,1] with a step of 0.05 for α, β and 0.1 for ρ,
which makes a total 4000 parameter combination domain. We
implemented the MMAS according to the study of Contreras et al.
[12], where an ACO-based algorithm was applied to forest trans-
portation planning problems (FTPPs) with consideration of an
environmental impact factor called sediment.

The MMAS was applied to five test cases (Table 2). Case I was a
fixed charge transportation problem [24] where fixed and variable
costs were involved. Case II and Case III were constrained fixed
charge transportation problems where constraints of different
strictness levels were imposed. Case IV was a minimisation
problem where the objective was to obtain a set of routes from
sources to destinations with minimum total weights. Case V was
the Hamiltonian cycle problem which is a special case of the
travelling salesmen problem (TSP) obtained by setting the edge
attributes to one [1].

The test cases were designed on a network (Original Problem in
Fig. 3) that consists of 500 road segments and 200 intersection
nodes with 25 sources and one destination. The graph coarsening
technique was applied to the problem network to produce coarser
level problems. Special nodes, such as source and destination
nodes, were reserved from the coarsening process and copied
directly from a finer level to a coarser level problem. Five coarser
level problems (Level 1, 2, 3, 4, 5 in Fig. 3) with increasingly
reduced sizes were obtained (Table 3). The problem size was
reduced considerably from the original problem to the coarser
level problems (about 40% from the original problem to Level
1 problem). However, the size reduction rate gradually decreased
as the coarser level increased (i.e., only 15% from Level 4 to Level
5). This can be explained by the fact that a coarser level problem
contains fewer number of matching edges than a finer level
problem. Therefore, fewer number of nodes and edges are aggre-
gated and collapsed when the coarsening process is applied,
causing a smaller size reduction rate.

Because the size reduced from a coarser level to the next
coarser level problem can be inadequate, not all five coarser
level problems might be needed in MParamILS. To select
appropriate coarser level problems, we ran MMAS 100 times
on each of the coarser level problem (including original pro-
blem) to solve for Case I and compared their average running
times (Fig. 4). MMAS was set to stop after 10,000 iterations and
the three parameters were set: α¼0, β¼0, ρ¼1, which turned
off the functionality of the pheromone information and made
MMAS a randomised search algorithm. The average computing
time reduction was highest from the original problem to Level
1 problem, and lowest from Level 4 problem to Level 5 problem
(Fig. 4). In general, the differences in computing time between
coarser level problems became less significant as the problem
size differences became smaller. This was especially evident for

P. Lin et al. / Swarm and Evolutionary Computation 20 (2015) 48–57 53

Level 3, 4 and 5 problems, where their computing times only
differed in one or two seconds. Due to the small time difference,
we only considered Level 1, 2 and 3 problems in our experi-
ments for the MParamILS.

5. Results and discussion

The Exhaustive method was applied to each test case once and
used to compare solution quality. It ran MMAS on each parameter
combination 10 times, and the best solutions were selected
according to the objective functions. Since sequential exhaustive
methods can take a long time, we divided the parameter combina-
tion domain into 10 intervals and applied the Exhaustive method

to each of them simultaneously. The computing time of the
Exhaustive method was calculated by adding the time spent for
each interval. ParamILS and MParamILS were run independently
10 times for each test case, and average computing time and

Table 2
Test cases, objective functions, and constraints.

Test case Name Objective function Constraints Description

Case I Fixed charge problem
(FCP)

min ∑
n

i ¼ 1
∑
n

ja i;
ja 0

VCi;j � Ei;jþFCi;j � Ei;j

where Ei;j ¼ f0;1g

VC: variable cost, FC: fixed cost, Route: multiple sources to one or more
destinations.

Case II &
Case
III

Constrained FCP
(CFCP)

min ∑
n

i ¼ 1
∑
n

ja i;
ja 0

VCi;j � Ei;jþFCi;j � Ei;j

where Ei;j ¼ f0;1g

∑
n

i ¼ 1
∑
n

ja i;
ja 0

Sedi;j � Ei;jrSedRct
Sedi;j:sediment, SedRct¼2000 for Case II, SedRct¼1500 for Case III,
Route: multiple sources to one or more destinations.

Case IV Minimisation
transportation
problem

min ∑
n

i ¼ 1
∑
n

ja i;
ja 0

Sedi;j � Ei;j where

Ei;j ¼ f0;1g

Route: multiple sources to one or more destinations.

Case V Hamiltonian cycle
problem

∑
n

i ¼ 1
∑
n

ja i;
ja 0

Ei;j where Ei;j ¼ f0;1g ∑
n

i ¼ 0;
ia j

Ei;j ¼ 1, ∑
n

j ¼ 0;
ja i

Ei;j ¼ 1
Route: single source, every node has to be visited exactly once.

Original Problem Coarse Level 1 Coarse Level 2

Coarse Level 3 Coarse Level 4 Coarse Level 5

Fig. 3. Original problem and its subsequent coarser level problems.

Table 3
Number of nodes and edges between the original network and coarser level
networks. Percentage of nodes and edges reduced from finner level networks to
coarser level networks.

Original Level 1 Level 2 Level 3 Level 4 Level 5

of nodes 200 116 74 53 41 35
of Edges 500 300 190 134 102 86
Nodes reduction rate N/A 42.00% 36.21% 28.37% 22.64% 14.63%
Edges reduction rate N/A 40.00% 36.66% 29.47% 23.88% 15.68%

17.83

11.24

7.68

5.80

4.64
4.21

0

2

4

6

8

10

12

14

16

18

20

Original level 1 level 2 level 3 level 4 level 5

Se
co

nd
s

time to run 10000 iterations, average
on 100 ACO runs, α = 0, β = 0, ρ= 1

Fig. 4. Average computing time (in seconds) of running MMAS 100 times on the
original problem and its coarse level problems for Case I (ACO stops search for
solution after 10,000 iterations, α¼0, β¼0, ρ¼1).

P. Lin et al. / Swarm and Evolutionary Computation 20 (2015) 48–5754

objective function value were used for comparisons in the experi-
mental results. Because MParamILS was set to use different
number of coarser level problems, we use MParamILSi to denote
for the different settings, where i indicates the maximum number
of coarsening levels used. For example, MParamILS4 indicates that
Level 0–3 problems were used. Additionally, we use MParamILSs
as a collective name referring to MParamILS with all the tested
coarsening level settings as a whole.

The performances were first compared between the Exhaustive
method and the two heuristic methods. The purpose was to
investigate whether the tested heuristics can produce the same
solution qualities. No significant differences among the tested
methods in terms of solution quality can be observed (Table 4).
Especially for the Case I, IV, and V, where the both ParamILS and
MParamILSs obtained the same best objective values as the
Exhaustive method with zero standard deviations. This indicates
that ParamILS and MParamILSs were able to match the perfor-
mance of the Exhaustive method, and high-quality solutions were
consistently produced by both heuristic methods. In terms of
computing time, in average for all test cases, the Exhaustive
method spent substantially longer time (about 75% more) com-
pared to ParamILS of which the required computing times for all
the test cases were the second longest (Table 5).

Second, comparisons of performances between ParamILS and
MParamILSs were conducted to investigate how much MParamILSs
can save time compared to ParamILS. According to the statistical
results, the computing times were significantly different among the
testedmethods for all the test cases, andMParamILSs was always faster
than ParamILS (Table 5). On average when compared to ParamILS,
MParamILS2 reduced more than 60% of the computing time, MPar-
amILS3 and MParamILS4 reduced more than 70% of the computing
time. This demonstrates, for all tested problem cases, that MParamILSs
required significant shorter time than ParamILS. It can also be observed
that MParamILS2 required longer time than MParamILS3, followed by
MParamILS4, which indicates that larger time savings were obtained
with MParamILS using more coarser level problems.

Next, comparisons in terms of computing time variation were
made among MParamILSs with ParamILS as the baseline method, in
order to investigate the performance of MParamILS using different
number of coarser level problems. Fig. 5 displays five box plots of
computing time distributions of 10 runs of the methods on each test
case. Results show that ParamILS had largest computing time

variations compared to MParamILSs for all the test cases. Moreover,
time variations among MParamILSs were similar, and varied for
different test cases. For example in Case III, MParamILS3 had larger
variation than MParamILS4, whereas an opposite result can be
observed in Case IV. This shows that (1) MParamILSs was more
stable (less variation) than ParamILS in terms of computing time,
and (2) time variations amongMParamILSs were small and not related
to the number of coarser level problems used.

Finally, we conducted significance statistical analyses on both
objective values and computing times considering all test cases
(Diffograms in Fig. 6(a)). The vertical and horizontal axes in the
Diffograms were marked with the least-square means. Coloured lines
indicate if there is a significant difference between twomethods.When
a coloured line crosses the reference line (the diagonal dashed line), the
least-square means associated with the center point (joint point) of the
line are not significantly different. The results were consistent between
any combination of methods that there were no significant differences
in objective value (Fig. 6(a)). This indicates MParamILSs was able to
match ParamILS in solution quality for all the test cases. On the other
hand, results show that computing times were significantly different
among ParamILS and MParamILSs (Fig. 6(b)). This difference was
largest between ParamILS and each MParamILS and relatively small
among MParamILSs. This corresponds with the results in Table 5 that
MParamILSs required substantially less computing time than ParamILS
for all the test cases.

6. Conclusion

In this study, a multilevel parameter configuration scheme
(MParamILS) has been developed to configure ACO-based algo-
rithms for solving TPPs modelled with underlying weighted net-
works. It combines a graph coarsening technique and a modified
ParamILS procedure. MParamILS coarsens a large problem into
smaller problems and uses the ParamILS to select high-quality
parameter combinations from the smaller problems. The selected
parameter combinations are then used to solve the original
problem. As a result, the computing time is significantly reduced
by evaluating a larger number of parameter combinations on less
complex (smaller) problems and evaluating fewer number of
parameter combinations on more complex (larger) problems.
MParamILS was applied to five test cases and compared with

Table 4
Best objective values obtained by the Exhaustive, average objective values obtained by ParamILS and ParamILSs and the standard deviations for the five test cases.

Test Cases Exhaustive ParamILS
(AVG)

ParamILS
(Std)

ParamILS2
(AVG)

ParamILS2
(Std)

ParamILS3
(AVG)

ParamILS3
(Std)

ParamILS4
(AVG)

ParamILS4
(Std)

Case I 1,496,560 1,496,560 0 1,496,560 0 1,496,560 0 1,496,560 0
Case II 1,585,590 1,585,705 484.79 1,585,840 655.74 1,585,860 644.67 1,590,043 6395.21
Case III 2,048,090 2,053,620 16,405.11 2,052,869 17,955.51 2,058,922 16,088.22 2,055,849 15194.02
Case IV 948.6 948.6 0 948.6 0 948.6 0 948.6 0
Case V 199 199 0 199 0 199 0 199 0

Table 5
Results of statistical significance tests (ANOVA test) on computing time of methods for each test case and the corresponding least-square means of computing time. The
difference in computing time is significant if the p value is less than 0.05.

Po0:05 Exhaustive ParamILS ParamILS2 ParamILS3 ParamILS4 P�Value

Case I 951,413.80 244,822.90 98,266.35 75,390.81 49,693.95 o0:0001
Case II 921,843.70 246,613.80 99,363.67 69,789.65 54,150.39 o0:0001
Case III 866,465.40 277,902.80 104,019.05 73,155.85 56,313.06 o0:0001
Case IV 849,819.00 19,1257.50 82,751.51 73,309.86 63,709.44 o0:0001
Case V 1,018,748.20 172,384.10 53,592.25 35,869.23 34,975.68 o0:0001
Average 921,658.02 226,596.22 87,598.57 65,503.08 51,768.50
Reduced 75% 61% 25% 21%

P. Lin et al. / Swarm and Evolutionary Computation 20 (2015) 48–57 55

ParamILS and the Exhaustive method in terms of solution quality
and computing time. Results show that MParamILS was able to
match solution qualities obtained by the other methods and
reduce computing times substantially for all test cases.

Moreover, savings in computing time increased with the
number of coarser level problems used in MParamILS. Considera-
tion should be given to select an appropriate number of increas-
ingly coarser problems used in MParamILS. A large number of
coarser problems might result in low-quality parameter combina-
tions as the structure of the coarsest problem might differ too
much from the original problem. On the other hand, a small

number of coarser problems can result in MParamILS requiring a
longer computing time. In addition, the graph coarsening techni-
que presented in this study is designed to produce coarser level
graphs by contracting finer level edges with large attribute
weights. This is an important property for solving minimisation
problems. However, depending on different applications, weights
on contracted edges can be calculated differently. Analogously,
parameter configurators other than ParamILM in the proposed
multilevel scheme can be considered. Lastly, although we applied
MParamILS to configure ACO algorithms, it can be extended to any
parameterized algorithms.

Fig. 6. Diffograms illustrating the objective and time significance comparisons between ParamILS and MParamILSs. (a) Significance comparison on objective value among
methods and (b) significance comparison on computing time among methods.

Fig. 5. Distribution of computing times of ParamILS and MParamILSs over 10 runs for each test case. (a) Computing time distribution of Case I, (b) computing time
distribution of Case II, (c) computing time distribution of Case III, (d) computing time distribution of Case IV and (e) computing time distribution of Case V.

P. Lin et al. / Swarm and Evolutionary Computation 20 (2015) 48–5756

References

[1] R.G. Askin, S.H. Cresswell, J.B. Goldberg, A.J. Vakharia, A Hamiltonian path
approach to reordering the part-machine matrix for cellular manufacturing,
Int. J. Prod. Res. 29 (6) (1991) 1081–1100.

[2] P. Balaprakash, M. Birattari, T. Stützle, Improvement strategies for the f-race
algorithm: sampling design and iterative refinement, in: Hybrid Metaheur-
istics, Springer, 2007, pp. 108–122.

[3] L. Bianchi, L.M. Gambardella, M. Dorigo, An ant colony optimization approach
to the probabilistic traveling salesman problem, in: Parallel Problem Solving
from Nature PPSN VII, Springer, 2002, pp. 883–892.

[4] M. Birattari, T. Stützle, L. Paquete, K. Varrentrapp, et al., 2002. A racing
algorithm for configuring metaheuristics. in: GECCO, vol. 2. Citeseer, pp. 11–18.

[5] M. Birattari, Z. Yuan, P. Balaprakash, T. Süttzle, F-race and iterated f-race: an
overview, in: T. Bartz-Beielstein, M. Chiarandini, L. Paquete, M. Preuss (Eds.),
Experimental Methods for the Analysis of Optimization Algorithms, Springer,
Berlin Heidelberg, 2010, pp. 311–336.

[6] C. Blum, Ant colony optimization: introduction and recent trends, Phys. Life
Rev. 2 (4) (2005) 353–373.

[7] N. Blum, A New Approach to Maximum Matching in General Graphs, Springer,
Berlin Heidelberg, 1990.

[8] E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence, Oxford, 1999.
[9] E. Bonabeau, M. Dorigo, G. Theraulaz, Inspiration for optimization from social

insect behaviour, Nature 406 (6791) (2000) 39–42.
[10] J. Branke, J.A. Elomari, Meta-optimization for parameter tuning with a flexible

computing budget, in: Proceedings of the Fourteenth International Conference
on Genetic and Evolutionary Computation Conference, ACM, 2012, pp. 1245–
1252.

[11] J. Branke, M. Guntsch, New ideas for applying ant colony optimization to the
probabilistic TSP, in: Applications of Evolutionary Computing, Springer, 2003,
pp. 165–175.

[12] M.A. Contreras, W. Chung, G. Jones, Applying ant colony optimization
metaheuristic to solve forest transportation planning problems with side
constraints, Can. J. For. Res. 38 (11) (2008) 2896–2910.

[13] G. Di Caro, F. Ducatelle, L.M. Gambardella, Anthocnet: an adaptive nature-
inspired algorithm for routing in mobile ad hoc networks, Eur. Trans.
Telecommun. 16 (5) (2005) 443–455.

[14] M. Dorigo, M. Birattari, T. Stutzle, Ant colony optimization, IEEE Comput. Intell.
Mag. 1 (4) (2006) 28–39.

[15] M. Dorigo, G. Di Caro, L.M. Gambardella, Ant algorithms for discrete optimiza-
tion, Artif. Life 5 (2) (1999) 137–172.

[16] H. Duan, G. Ma, S. Liu, Experimental study of the adjustable parameters in
basic ant colony optimization algorithm, in: IEEE Congress on Evolutionary
Computation, CEC 2007, IEEE, 2007, pp. 149–156.

[17] F. Ducatelle, G. Di Caro, L.M. Gambardella, Using ant agents to combine
reactive and proactive strategies for routing in mobile ad-hoc networks, Int.
J. Comput. Intell. Appl. 5 (02) (2005) 169–184.

[18] D. Favaretto, E. Moretti, P. Pellegrini, On the explorative behavior of max–min
ant system, in: Engineering Stochastic Local Search Algorithms, Designing,
Implementing and Analyzing Effective Heuristics, Springer, 2009, pp. 115–119.

[19] G. Francesca, P. Pellegrini, T. Stützle, M. Birattari, Off-line and on-line tuning: a
study on operator selection for a memetic algorithm applied to the QAP, in:
Evolutionary Computation in Combinatorial Optimization, Springer, 2011,
pp. 203–214.

[20] H.N. Gabow, An efficient implementation of Edmonds' algorithm for max-
imum matching on graphs, J. ACM (JACM) 23 (2) (1976) 221–234.

[21] D. Gaertner, K.L. Clark, On optimal parameters for ant colony optimization
algorithms, in: IC-AI. Citeseer, 2005, pp. 83–89.

[22] W.J. Gutjahr, S-aco: an ant-based approach to combinatorial optimization
under uncertainty, in: Ant Colony Optimization and Swarm Intelligence,
Springer, 2004, pp. 238–249.

[23] B. Hendrickson, R.W. Leland, A multi-level algorithm for partitioning graphs,
Super Computing 95 (1995) 28.

[24] W.M. Hirsch, G.B. Dantzig, The fixed charge problem, Naval Res. Logist. Quart.
15 (3) (1968) 413–424.

[25] F. Hutter, H.H. Hoos, K. Leyton-Brown, T. Stützle, Paramils: an automatic
algorithm configuration framework, J. Artif. Intell. Res. 36 (1) (2009) 267–306.

[26] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partition-
ing irregular graphs, SIAM J. Sci. Comput. 20 (1) (1998) 359–392.

[27] M. Khichane, P. Albert, C. Solnon, An aco-based reactive framework for ant
colony optimization: first experiments on constraint satisfaction problems, in:
Learning and Intelligent Optimization, Springer, 2009, pp. 119–133.

[28] R.J. Lipton, R.E. Tarjan, A separator theorem for planar graphs, SIAM J. Appl.
Math. 36 (2) (1979) 177–189.

[29] M. López-Ibánez, T. Stützle, The automatic design of multiobjective ant colony
optimization algorithms, IEEE Trans. Evol. Comput. 16 (6) (2012) 861–875.

[30] M. Lopez-Ibanez, T. Süttzle, Automatically improving the anytime behaviour of
optimisation algorithms, Eur. J. Oper. Res. 235 (3) (2014) 569–582.

[31] R. Montemanni, L.M. Gambardella, A.E. Rizzoli, A.V. Donati, Ant colony system
for a dynamic vehicle routing problem, J. Comb. Optim. 10 (4) (2005) 327–343.

[32] P. Pellegrini, T. Stützle, M. Birattari, Off-line vs. on-line tuning: a study on
maxmin ant system for the TSP, in: Swarm Intelligence, Springer, 2010,
pp. 239–250.

[33] A. Radulescu, M. López-Ibánez, T. Stützle, Automatically improving the any-
time behaviour of multiobjective evolutionary algorithms, in: Evolutionary
Multi-Criterion Optimization, Springer, 2013, pp. 825–840.

[34] C. Solnon, K. Ghédira, Ant colony optimization for multi-objective optimiza-
tion problems, in: 2012 IEEE 24th International Conference on Tools with
Artificial Intelligence, vol. 1, IEEE Computer Society, 2007, pp. 450–457.

[35] T. Stützle, M. Dorigo, ACO algorithms for the traveling salesman problem, in:
Evolutionary Algorithms in Engineering and Computer Science, 1999, pp. 163–183.

[36] T. Stützle, H.H. Hoos, MAX–MIN ant system, Future Gener. Comput. Syst. 16 (8)
(2000) 889–914.

[37] T. Stützle, M. López-Ibánez, P. Pellegrini, M. Maur, M.M. de Oca, M. Birattari, M.
Dorigo, Parameter adaptation in ant colony optimization, in: Autonomous
Search, Springer, 2012, pp. 191–215.

[38] S.-H. Teng, Coarsening, sampling, and smoothing: elements of the multilevel
method, in: Algorithms for Parallel Processing, Springer, 1999, pp. 247–276.

[39] V. Torczon, On the convergence of pattern search algorithms, SIAM J. Optim. 7
(1) (1997) 1–25.

[40] C. Walshaw, Multilevel refinement for combinatorial optimisation problems,
Ann. Oper. Res. 131 (1–4) (2004) 325–372.

[41] B. Yu, Z.-Z. Yang, B. Yao, An improved ant colony optimization for vehicle
routing problem, Eur. J. Oper. Res. 196 (1) (2009) 171–176.

[42] M. Zaslavskiy, F. Bach, J.-P. Vert, A path following algorithm for the graph
matching problem, IEEE Trans. Pattern Anal. Mach. Intell. 31 (12) (2009)
2227–2242.

P. Lin et al. / Swarm and Evolutionary Computation 20 (2015) 48–57 57

http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref1
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref1
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref1
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref5
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref5
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref5
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref5
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref6
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref6
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref7
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref7
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref8
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref9
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref9
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref12
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref12
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref12
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref13
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref13
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref13
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref14
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref14
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref15
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref15
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref17
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref17
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref17
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref20
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref20
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref23
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref23
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref24
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref24
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref25
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref25
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref26
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref26
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref28
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref28
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref29
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref29
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref30
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref30
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref31
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref31
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref36
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref36
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref39
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref39
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref40
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref40
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref41
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref41
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref42
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref42
http://refhub.elsevier.com/S2210-6502(14)00078-9/sbref42

	Automatically configuring ACO using multilevel ParamILS to solve transportation planning problems with underlying...
	Introduction
	Background
	Algorithm configuration problem
	ParamILS framework

	Methods
	Multilevel parameter configuration framework
	Generating coarser level problems
	Modifying ParamILS framework
	Multilevel ParamILS framework

	Implementation and experiment setup
	Results and discussion
	Conclusion
	References

