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a b s t r a c t

This paper presents a multilevel ant colony optimization (MLACO) approach to solve constrained forest
transportation planning problems (CFTPPs). A graph coarsening technique is used to coarsen a network
representing the problem into a set of increasingly coarser level problems. Then, a customized ant colony
optimization (ACO) algorithm is designed to solve the CFTPP from coarser to finer level problems. The
parameters of the ACO algorithm are automatically configured by evaluating a parameter combination
domain through each level of the problem. The solution obtained by the ACO for the coarser level
problems is projected into finer level problem components, which are used to help the ACO search for
finer level solutions. The MLACO was tested on 20 CFTPPs and solutions were compared to those
obtained from other approaches including a mixed integer programming (MIP) solver, a parameter
iterative local search (ParamILS) method, and an exhaustive ACO parameter search method. Experi-
mental results showed that the MLACO approach was able to match solution qualities and reduce
computing time significantly compared to the tested approaches.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Forest transportation planning problems (FTPPs) are a special
case of the fixed-charge transportation problems (FCTPs), which
have received significant attention from operations research and
management science [20,27]. Traditionally, FTPPs are formulated
as a MIP models and solved optimally using branch-bound
methods [3]. However, the computational costs of these methods
increase exponentially with the problem size as FCTPs are known
to be NP-hard [28,13]. To efficiently solve large-scale CFTPP,
metaheuristics such as simulated annealing [2], genetic algorithm
[1,16] have also been applied. For example, Contreras et al. [5]
applied for the first time an ACO algorithm [7,4] to solve medium-
scale FTPPs. Lin et al. [23,24] developed an improved version of the
ACO algorithm to address specific FTPPs: a CFTPP and a bi-
objective FTPP, respectively. Although the improved results in
terms of computing time and solution quality were obtained in the
experiments, solving large scale CFTPPs remains difficult because
they require significantly long computing times. Moreover, the
uwrf.edu (R. Dai),
performance of the ACO algorithm is highly dependent on their
parameter settings [23,10].

As a general solution strategy, multilevel schemes have been used
for many years and applied to several problem areas [11,18,21,26,17]
where solution quality can benefit from having a relatively high-
quality initial solution that can be computed inexpensively on a lower
level scale. These schemes have proven to be efficient when solving
discrete NP-hard problems with a finite but exponential number of
problem component combinations [30,19,29]. One recent example of
using a multilevel approach to solve related transportation problems is
[25] where Lin et al. developed a multilevel parameter configuration
scheme and an ACO was the target algorithm configured from the
coarsest to the finest level problem. Based on this previous study, we
present the design, implementation, and testing of a multilevel ACO
approach (MLACO) to solve large-scale CFTPPs with reduced com-
puting times. The essential idea is to solve the original problem, which
might be computationally expensive, using a set of increasingly coar-
ser level problems on which the computational cost is cheaper. The
main objective of this study is to demonstrate that, for the problem
instances tested, the MLACO approach can either accelerate solution
convergence rate or improve solution quality. We also examined the
underlying process driving performance improvements compared to
the other methods, identify advantages and limitations of the
approach, and suggest how it might be applied to other optimization
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problems. Ultimately, the MLACO approach presented in this study can
serve as a framework for solving large-scale CFTPPs and provide
managers with environment-friendly road network alternatives to
help them make informed decisions.
2. Preliminary

2.1. Contained forest transportation planning problem (CFTPP)

The CFTPP considered in this study is the problem of finding the
set of least-cost routes from timber sale locations to designated mill
destinations while reducing the negative environmental impacts
associated with timber transportation [5]. Sediments expected to
erode from road surfaces due to the traffic of heavy log-trucks were
considered as the problem constraints. Conceptually, the CFTPP can be
modeled as a network comprised of a set of nodes V and edges E
representing road intersections and segments, respectively. Three
attributes associated to each edge in the network are: fixed cost
ðFixed_CostÞ, variable cost ðVar_CostÞ, and sediment amount (Sed).
Fixed_Cost is a one-time road construction cost ($) and/or main-
tenance cost, Var_Cost represents hauling cost ($) per unit of timber
volume, and Sed (tons/year) represents the amount of sediments that
are detrimental to the forest ecosystem. To formulate the CFTPP
objective function, let S¼ fs1;…; smg be the set of timber locations and
M¼ fm1;…;mng the set of mill destinations, where S;M� V . Each
timber sale siAS has a minimumvolume of timber to be delivered at a
given period to a designated mill mjAM. The main objective can be
defined as a cost minimization function:

Minimize :
X
E

Var_Costi;j � Voli;jþFixed_Costi;j ð1Þ

where Var_Costi;j is the variable cost, Fixed_Costi;j the fixed cost, and
Voli;j the total timber volume transported from node i to j (Voli;j ¼ 0 if
the road segment ij is not used). Also, the total timber volumes
arriving at mills must agree with the total timber volumes shipped out
from the timber sales:

Xm
i ¼ 1

Volsi ¼
Xn
j ¼ 1

Volmj ð2Þ

and the amount of sediment eroding from the entire transportation
network must not exceed a maximum allowable value:

Constraint :
X
E

Sedi;jrSedmax: ð3Þ

where Sedmax is the maximum sediment threshold. The equality (2)
and the inequality (3) are the constrains in addition to minimizing the
objective function (1) to determine the optimal solution for the CFTPP.
A detailed description of CFTPPs can be found in [5,23,24].
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Fig. 1. Diagram illustrating a multilevel scheme at its simplest form (only two levels), w
side). The ACO algorithm solves the coarser level problem first and the obtained solut
hand side).
2.2. Ant colony optimization

ACO was developed in the mid 1990s to solve the traveling sales-
man problem [9,8]. The algorithm was inspired by ant foraging
behavior. When searching for food, ants walking to and from a food
source deposit a substance called pheromone on the ground. Other
ants can perceive the presence of the pheromone and tend to follow
paths where pheromone concentrations are higher.

In the ACO algorithm to findminimum routes, a set of artificial ants
are placed at origin locations andmove through adjacent locations one
at a time towards the destinations. Guided by the pheromone values,
artificial ants construct routes simultaneously. Let C be a set of all
possible locations, an ant placed at location x chooses what location y
to visit next according to a transition probability:

Pt
x;y ¼

T α
x;y � ηβx;yP

kANbr
T α

x;k � ηβx;k
if yAcities

0 Otherwise

8>>><
>>>:

where x; yAC, Pt
x;y is the probability of ant t moving from x to y, kA

Nbr represents one of unvisited locations adjacent to x, τ is the pher-
omone intensity on the path connecting two locations, η is the visibility
(typically calculated as the inverse to the distance between the two
locations) α and β are positive parameters that control the relative
importance of pheromone intensity versus visibility. The pheromone
intensity τ is updated iteratively using the following formula:

T x;y’ρ� T x;yþΔT x;y;

where ρ is the pheromone persistence rate andΔτx;y is the amount of
pheromone to be added to path (x,y). For a more detailed description of
ACO algorithm, see [7].

2.3. Multilevel scheme

Typically, a multilevel scheme solves a large problem using a
set of increasingly smaller problems through a sequence of solu-
tion refinements [25]. These smaller problems are obtained by
successively applying a coarsening process to the original problem.
As a result, a hierarchy of coarser problems are generated where a
given coarser level problem is always smaller than its finer level
problem. The solution obtained for a given coarser level problem
in the solution refinement process is projected into the finer level
problem components which are then used to help search for the
finer level solution. The process is illustrated in Fig. 1 where a finer
problem is coarsened into a coarser problem. After the ACO algo-
rithm is applied to a given coarser problem, the solution is inter-
polated into a set of finer level components that can help the ACO
algorithm find good solutions for the finer level problem.

For clarity, we define the following terms:

Coarser/finer level problems: a set of increasingly coarser level
problems Π ¼ fΠ0;Π1;…;ΠNg where Π0 is the original
iner Problem
pensive to solve)

Coarser Problem
latively cheaper to solve)

Step1:Coarsening

Solution
(Coarser Problem)

Solution
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ACO

ACO
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Step3:

Step4:

here the finer level problem is coarsened into a coarser level problem (left-hand
ion is used to help find high-quality solutions for the finer level problem (right-
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Fig. 2. The upper left corner of the diagram shows the original problem network where the objective is to find a route from an origin (red node) to a destination (green
node). The matching edges (red edges) are contracted to produce coarser level problems. The original problem is coarsened into a set of increasingly coarser problems. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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problem and ΠN is the coarsest level problem. If a pro-
blem Π iAΠ is referred to as a coarser level problem,
then the problemΠ i�1AΠ is referred to as its finer level
problem and vice versa.

Projected components: for a coarser level problem Π i and its
finer level problem Π i�1, the projected components
refer to the finer level problem components obtained by
interpolating the solution found for the coarser level
problem.

Projection process: for a coarser level problem Π i and its finer
level problem Π i�1, the projection process interpolates
the coarser level solution to obtain the projected
components.
3. Multilevel ACO approach

The MLACO approach presented in this paper is designed based on
the multilevel scheme in which coarser level problems are produced
by using the graph coarsening algorithm proposed in [12]. It works as
follows: starting from the original problem, it finds a set of matching
edges in which no two edges are incident to the same node. It then
collapses the matching edges and aggregates the incident nodes to
produce a coarser level problem with fewer number of edges and
nodes. Next, the same process is applied to the coarser level problem
to generate the next coarser level problem with fewer edges and
nodes than the previous one. The coarsening algorithm repeats this
process until a threshold, such as number of coarser level problems to
be produced, is met. As a result, a sequence of coarser level problems
is obtained. For clarity, in the rest of the paper, the nodes on the
collapsed matching edges are referred to as “matching nodes”, the
coarser level nodes obtained by aggregating the matching nodes are
referred to as “aggregated nodes”, and the coarser level nodes that are
the same as its finer level are referred to as “unaggregated nodes”.

The next step of the MLACO approach is to apply the ACO algorithm
to solve the original problem in a reverse order by applying it first to
the coarsest level problem. The obtained solution for the coarsest level
is interpolated into projected components for the second coarsest level
which are given larger amount of pheromone values than other pro-
blem components during the solution search process of the ACO
algorithm. Next, the ACO is applied to the second coarsest level pro-
blem (or the corresponding finer level problem) to search for the best
solution with preference given to the projected components. The
obtained solution for the second coarsest level problem is then
interpolated into projected components which are used to help the
ACO algorithm search for the best solution for the third coarsest level
problem. This process is repeated at each coarser level problem until
the original problem is solved. The rationale behind this design is that
most (if not all) of projected components are assumed to be optimal
solution components of the next coarsest level problem. Guided by
these problem components at the beginning of the search process, the
ACO algorithm is expected to converge towards the optimal (or high-
quality) solution much faster.

In addition to the solution search and refinement process, we also
adopted the multilevel parameter configuration approach from [25] to
achieve the maximum ACO performance. In the MLACO approach, the
parameter settings of the ACO algorithm are refined by selecting high
quality parameter values from a predefined parameter combination
domain that includes all possible parameter combinations with a
given value interval for each configured parameter. The selection
decision is based on the quality of the solution obtained at each
iteration. As a result, low quality parameter values from the domain
are discarded. This parameter refinement process is applied from
coarsest level problem to the finest level (original) problemwithin the
solution search process. As ACO algorithm performance is highly
sensitive to its parameter settings [23,10] because of its stochastic
nature, integrating this approach into the MLACO design is expected to
increase the change for finding the optimal solutions. The MLACO
approach is illustrated in Fig. 2.

3.1. Underlying guidedACO

The ACO algorithm (Algorithm 1) used in the MLACO approach
is referred to as GuidedACO as its search process is guided by the
projected components. The projected components are initialized
(in Algorithm 2) with larger amounts of pheromone values to
increase their probabilities of being selected for constructing
solutions. Specifically in this study, pheromone values for the
projected components are set to be the inverse of the normalized
heuristic value ðηCi

=max ηÞ multiplied by an updating factor
(Update_Factor – discussed later). This setting ensures that the
projected components with smaller heuristic values (such as costs)
receive a larger amount of pheromone and vice versa.

In trial experiments, we found that the GuidedACO can find several
solutions with the same quality (same objective function value and
same total sediment value), indicating the existence of multiple opti-
mal solutions. This is especially true for constrained optimization
problems where two solutions can be equivalent. For instance, two
equivalent solutions might have either the same objective value but
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different constraint values, or same objective and constraint value but
different solution components. The former case is expected to occur
more frequently than the latter because seldom two solutions with
different components have identical objective and constraint values.
Consequently, equivalent solutions in the CFTPP are defined as
follows:.

Definition 1. Two feasible solutions Si and Sj are equivalent,
denoted as Si JSj, if their objective function values are equal:
ObjðSiÞ ¼ObjðSjÞ, and if there is at least one solution component C
such that CASi4C =2Sj or vise versa.

The solution search process (SearchProcess in Algorithm 1) is
comprised of two stages. During the first stage, it starts with a
solution search where the objective is to determine the existence
of feasible solutions. When a feasible solution is found, the second
stage takes place where the objective changes to find the best
feasible solution. During the first stage, the algorithm is likely to
find a number of infeasible solutions before a feasible solution is
found. Thus, pheromone values are updated only when an infea-
sible solution with the feasible condition closer than all previously
obtained infeasible solutions is found. At the same time, a counter
(that tracks the number of consecutive iterations that have not
received pheromone update) is reset to zero to allow more itera-
tions and improve solution quality. If the GuidedACO cannot find a
feasible solution during the first stage, the search process is
stopped. The transition probability in the first stage is defined in
Formula (4):

Ptðci;jÞ ¼
ðT i;jÞα � ðSed�1

i;j Þβ
P

i;kANbrðT Þα � ðSed�1
i;j Þβ

ð4Þ

where t is the iteration number, c is the solution component and
Nbr represents all available adjacent components.

Algorithm 1. GuidedACO ðΠ; Scomponent ;θÞ.
Algorithm 2. Set_Phero ðΠ; ScomponentÞ.
During the second stage, the algorithm is expected to find
equivalent feasible solutions. In the case that an obtained solution
is equivalent to the current best solution, the GuidedACO includes
it in a set (BestSolus in Algorithm 1) that stores all equivalent best
solutions found from previous algorithm iterations. On the other



Fig. 3. Diagram illustrating the problem coarsening phase (A), and the projection process in the solution refinement phase (B). In the problem coarsening phase, the problem
Πi-1 is coarsened to obtain coarser level problem Πi. In the solution refinement phase, after interpolated the solution components eBi ;ACi

and eACi ;Di
in Πi, the possible solution

combinations that connect from node Bi�1 to node Di�1 are ðBi�1-Ai�1-Di�1Þ, ðBi�1-Ci�1-Di�1Þ, ðBi�1-Ai�1-Ci�1-Di�1Þ, ðBi�1-Ci�1-Ai�1-Di�1Þ. The projected
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.

Fig. 4. Calculating update factor values for projected solution components.
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hand, if the obtained solution is better than the current best
solution, it becomes new current best solution and those solutions
previously stored are removed from the set. The transition prob-
ability in this stage is defined in Formula (5):

Ptðci;jÞ ¼
ðT i;jÞα � ½λ� NFCost�1

i;j þð1�λÞ � Sed�1
i;j �β

P
i;kANbrðT i;kÞα � ½λ� NFCost�1

i;k þð1�λÞ � ðSed�1
i;k Þ�β

ð5Þ

in which NFCosti;j is the unit cost (summation of the fixed and
variable costs per timber volume) for the edge ði; jÞ calculated as

NFCosti;j ¼
Fixed_CostijP

qAQVolq
þVar_Costij ð6Þ

where Q represents all timber sales routes that use the component
ci;j,

P
qAQVolq is total timber volume transported through the

component ci;j, and the parameter λ is a weight used to balance the
importance of cost and sediment values.
Algorithm 3. Phero_Update(Π, CurrentBestSolution).
Pheromone values in both stages are updated using the current
best solution for every iteration. The GuidedACO increases pher-
omone values for the current best solution components by a small
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amount Δτ and decreases pheromone values for all other problem
components by (1�ρ) (Algorithm 3). The GuidedACO stops
searching for better solutions when the set of equivalent best
solutions reaches stagnation.

3.2. MLACO

The MLACO approach (Algorithm 4) uses the GuidedACO to solve
the CFTPP through a process of solution and parameter refinement
over a set of increasingly coarser level problems. It consists of a pro-
blem coarsening phase and a solution refinement phase (as illustrated
in Fig. 2). In the problem coarsening phase, coarser level problems are
produced using the graph coarsening algorithm which also tracks
coarsening information that includes contracted edges and aggregated
weights. For example, let a problemΠ0 be coarsened into coarser level
problems fΠ1;Π2;…;ΠNg and k¼ fk0; k1;…; kN�1g be the corre-
sponding coarsening information for all coarser level problems, kiAk
is defined as a set of triplets:

ki ¼ ki vΠ i� 1
a1 ; vΠ i� 1

b1
; vΠ i

c1

� �
; vΠ i� 1

a2 ; vΠ i� 1
b2

; vΠ i
c2

� �
;…; vΠ i� 1

ad
; vΠ i� 1

bd
; vΠ i

cd

� ����
on

ð7Þ

where d is the number of the aggregated nodes and each triplet
contains two finer level matching nodes va, vb and the resulted coarser
level aggregated node vc.
Algorithm 4. MLACO.
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In the solution refinement phase, the best found solution for a
coarser level problem is interpolated with the coarsening infor-
mation to produce projected components (Projection procedure in
Algorithm 4) which are the finer level problem components con-
tracted and aggregated to produce the coarser level solution
components (Fig. 3). The GuidedACO uses the projected compo-
nents to construct solutions for the finer level problem and
iteratively refines and improves the solution quality. The obtained
best solution for the finer level problem, in turn, is interpolated
again with the coarsening information to produce a new set of
projected components that are used in the GuidedACO to solve the
next finer level problem. The MLACO repeats the same steps
subsequently from coarser to finer level until the finest level
problem (original) is solved.

While the projected components are used as initial solution
and refined iteratively to obtain better quality solutions, the
MLACO also attempts to achieve maximum performance by
automatically selecting high-quality parameter combinations
(Evaluate procedure in Algorithm 4) from coarser to finer level
problems. When a new solution is obtained, it is compared to the
solutions in the best solution set obtained from previous itera-
tions. If the new solution is equivalent or better, it is included in
the best solution set and the associated parameter combination is
considered high-quality. Otherwise, it is discarded along with the
parameter combination used. By identifying and discarding low-
quality parameters, the overall computing time for configuring the
GuidedACO is reduced because of the fewer number of parameter
combinations requiring evaluation at the final level problem.

3.3. Calculating update factor

When setting pheromone values in a finer level problem, dif-
ferent projected components are given different pheromone
amounts. Each projected component is associated with an update
factor that reflects the importance of the projected component
based on the interpolated coarser level solutions. Depending on
the values of the update factors, the amount of pheromone is
assigned by giving a larger amount of pheromone to projected
components associated with larger update factors and vice versa
(Algorithm 2).

For a coarser level problem, after the GuidedACO is applied, a
number of equivalent solutions are found. Each of the equivalent
solutions is then interpolated to obtain a set of projected com-
ponents. As one solution component can exist in several equiva-
lent coarser level solutions, a projected component might also be
obtained more than once. The number of times a projected com-
ponent is obtained by the projection process indicates how fre-
quently the corresponding coarser level component is used as the
solution component and can be considered as a metric to calculate
the associated update factor.

An example of the calculation of the update factor is illustrated
in Fig. 4 where the solution set of a coarser level problem contains
two routes that pass through edges ea;b, eb;c , and eb;d (1st and 2nd

routes in left picture in Fig. 4A). Each edge is associated with a
number indicating the number of times the edge is used in the
solution set (i.e., the number for the edge ea;b is two since it is used
in both routes 1 and 2). After the projection process, nodes a and c
stay the same and node b is replaced with finer level nodes b1 and
b2 to produce the projected components because b is an aggre-
gated node (right picture in Fig. 4A). If a projected component is
incident to one or two unaggregated nodes (such as ea;b1 and eb1 ;c),
it is assigned the number associated with the coarser level
solution component incident to the same nodes. Otherwise, zero is
assigned to the projected component incident only to the finer
level nodes (i.e., eb1 ;b2 and eb2 ;b1 ). As the coarser level solution route



P. Lin et al. / Swarm and Evolutionary Computation 28 (2016) 78–87 85
goes from nodes a to c, the projected components are expected to
also connect these two nodes, which results in four possible paths:
ða-b1-cÞ, ða-b2-cÞ, ða-b1-b2-cÞ, ða-b2-b1-cÞ (left pic-
ture in Fig. 4B). Counting the solution component occurrences in
the four paths, ea;b1 , eb1 ;c , ea;b2 , eb2 ;c appear twice and eb1 ;b2 , eb2 ;b1
appear once. Then the update factor values are calculated by
adding these occurrences to the existing assigned numbers (right
picture in Fig. 4B).
Fig. 6. Percentage of the objective function value found by the four methods for
each problem tested. The objective function values of other methods are divided by
those obtained by MIP to calculate the percentages and MIP results are marked at
100% level (purple line). (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)

Table 2
Statistical test (univariate test with Tukey post hoc) of objective function values and
computing time for the tested methods. The EPS method was not included in the
statistical test for computing time as the differences between it and other methods
were evidently significant shown in Fig. 7 and Table 3.

Objective function value Computing
time

(I) Method (J) Method p-value (I) Method (J) Method p-value

EPS MIP 0.707 MIP MLACO o0:0001
MLACO 0.969 ParamILS o0:0001
ParamILS 0.845

MIP Exhaustive 0.707 MLACO MIP o0:0001
MLACO 0.43 ParamILS o0:0001
ParamILS 0.243

MLACO Exhaustive 0.969 ParamILS MIP o0:0001
MIP 0.43 MLACO o0:0001
ParamILS 0.983

ParamILS Exhaustive 0.845
MIP 0.243
MLACO 0.983

Table 3
Summary of computing time required to solve all problems for the Exhaustive,
ParamILS, MIP, and MLACO.

(Days) Exhaustive ParamILS MIP MLACO

Min 137 6 0 0
Max 227 19 10 4
Median 183 11 10 1
Average 184.352 12.274 6.009 1.288
Std Dev 26.079 3.280 4.888 1.053
4. Experiment setup

The algorithms and procedures presented in this study were
implemented using Cþþ and Java and uploaded to the Lipscomb
High Performance Computing Cluster (HPC) supported and
maintained by the University of Kentucky Center for Computa-
tional Science. All programs were executed on the computing
nodes of HPC: Dual Intel E5-2670 of 8 Cores at 2.6 GHz with 64 GB
of 1600 MHz RAM and Linux Red Hat OS. We compared the per-
formance of the MLACO approach with other three methods: an
exhaustive parameter search (EPS) method, a ParamILS method
[15], and the MIP solver (Table 1).

The configured parameters included α, β, ρ which values were
confined to [0,1] with a pace of 0.05, resulting in a 8000 parameter
combination domain (excluding zero parameter values). The EPS
method run the GuidedACO 10 times for each parameter combi-
nation in the domain and selected the feasible solution with the
best objective function value from the 10 runs. Because EPS
methods can often require long computing time, we divided the
parameter combination domain into 20 partitions and applied the
EPS method to all partitions simultaneously. The computing time
of the EPS method was calculated by adding the times required for
all partitions. The ParamILS method configured parameter settings
for the GuidedACO based on solution quality. It iteratively per-
muted parameter values and run the GuidedACO until it could not
find a better quality solution. The MIP formulation of the CFTPP
presented in [23] was implemented using Java and solved using
the CPLEX 12.5 Callable Library (ILOG Inc. 2007) with default
parameter setting [6]. Because MIP solvers can also take imprac-
tically long computing time, we set its maximum running time to
864,000 s (10 days), after which CPLEX was forced to stop and
report the best solution found.

The MLACO approach used a set of three increasingly coarser level
problems: Level-1, Level-2 and Level-3 (Table 1). After initial test
runs, three coarsening levels were selected to balance solution
quality and computation time as well as preserving the properties of
the original problem. This resulted in the coarsest level problem to be
about one eighth of the size of the original problem (problem size
was reduced by about one half from a given level to its coarser level).
Fig. 5. Sediment value (tons) associated with the best solution found by the four
methods for each problem tested.
For the experimental data, we used 10 network instances
containing the 20 CFTPPs used in Lin, et al., in [23]. These problems
were designed as medium-scale, grid-shaped hypothetical net-
work with 500 road segments, 25 timber sale locations, and a mill
destination. The hypothetical grid-shaped network was used
because it resembles real-world FTPPs, thus providing a good
testing case for algorithm performance. In addition, the medium-
scale size allows solving the instances a large number of times
within reasonable time to conduct the parameter search. All pro-
blem instances can be downloaded from [22].

5. Experimental results

The experiments were conducted to test performance in terms of
solution quality and computing time. All methods were able to find
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feasible solutions for all problems (obtained sediment amounts below
the constraint values as shown in Fig. 5). As MIP solver CPLEX can
solve CFTPPs optimally, its solutions were used to benchmark solution
qualities achieved by the EPS, ParamILS and MLACO methods (Fig. 6).
These three approximation methods were able to match MIP solutions
for most problems, except for problems 3, 16, 19 and 20 where solu-
tion qualities were slightly worse. In the worst case (problem 16), the
MLACO approach was able to outperform the ParamILS method and
was slightly worse than the EPS method. In addition, univariate sta-
tistical tests (Table 2) show that there were no significant differences
of solution quality between MIP and any other tested methods, indi-
cating that on average the three approximation methods are expected
to obtain near-optimal solutions for the tested problems. This also
indicates that the MLACO approach was able to self-configure properly
and obtained competitive high-quality solutions compared to the
other methods.

In terms of computing time, results show significant differences
among the tested methods (Table 3). For the test cases that
required the longest running time for each method, the EPS
method spent 227 days, ParamILS 19 days, MIP 10 days and
MLACO 4 days, while for the cases the required the least amount of
time, the EPS method spent 137 days, ParamILS 6 days, and both
MIP and MLACO less than one day. For the average computing time
required, the EPS method spent the longest (184.35 days) com-
pared to other methods, followed by the ParamILS that spent 12.27
days (about 6.6%), the MIP solver 6 days (3.2%), and the MLACO
approach only spent 1.28 days. Detailed computing time compar-
isons including testing problems are shown in Fig. 7.

Although MIP solvers typically require relatively long comput-
ing time, on average the CPLEX spent less time to solve all pro-
blems compared with the EPS and ParamILS methods. This resul-
ted because the MIP solver quickly found optimal solutions for
some problems (Fig. 7), which reduced the average computing
time. Compared to all other methods, the MLACO approach
required significantly less amount of computing time. The varia-
tion in computing time among problems was largest for the EPS
method (Std Dev: 26.7 days) followed by the MIP solver (Std Dev:
4.8 days) and ParamILS method (Std Dev: 3.2 days). In contrast, the
MLACO approach showed the most stable computing times (Std
Dev: 1.05 days). Also, computing time for the MIP solver was
highly skewed by problems that were solved very quickly (Fig. 7).
For the remaining problems, the MIP solver spent exactly 10 days
indicating it was not able to find the optimal solutions and was
forced to stop after the maximum running time. As suggested on
the CPLEX reference manual [14], MIP performance is affected by
its parameter setting. However, it is impractical to configure all
135 MIP parameters driving the search process.

Next, we analyzed the performance of the MLACO approach by
examining the parameter domain size and computing time required
for solving each level of the coarser problems by the GuidedACO. The
computing time is related to the number of parameter combinations
evaluated. For example, the minimum computing time required for all
problems at each level was largest for Level-3 and smallest for Level-0,
8000 and 6 respectively (Table 4), indicating that quicker computing
time was achieved for a smaller parameter domain size. On the other
hand, the maximum computing time required for all problems at each
level was largest for Level-0 (280,291 s) with the least number (176) of
parameter combinations to evaluate and was relatively small for Level-
3 (18,796 s) and Level-2 (13,725 s) for which larger numbers of para-
meter combinations were evaluated (8000 and 2162 parameter
combinations). This indicates that the computing time for solving a
coarser level problem was also directly affected by the problem size
and complexity. We can also observe that the computing times



Table 4
Computing time required by the MLACO approach and parameter combination domain size for each coarse level problem. Level-0 denotes for the original problem.

Computing time (s) Size of parameter combination domain

Level-3 Level-2 Level-1 Level-0 Level-3 Level-2 Level-1 Level-0

Min 7978 3436 3143 512 8000 889 63 6
Max 18,796 13,725 46,478 280,291 8000 2162 564 176
Median 9310 7301 9284 54,112 8000 1239 235 37
Average 10,076 7609 11,243 82,367 8000 1275 270 58
Std Dev 2337.848 2339.627 9542.240 86,383.311 0 275.652 142.449 53.721
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required for the last level coarser problem (Level-0) for all CFTPPs
were significantly more than the computing times required for other
coarser level problems (Fig. 8), and the computing time differences
between Level-1, Level-2 and Level-3 were considerably smaller. This
suggests that there is a need to design a scheme to determine number
of coarser level problems to be used in theMLACO for the future study.
Lastly, the size of parameter combination domain decreased sig-
nificantly (Fig. 9) from Level-3 (8000 on average) to Level-2 (1275) and
continued to decrease to Level-1 (270) and to Level-0 (58). This result
shows that as problem complexity increased, the number of high-
quality parameter combinations for the problem was reduced, which
might indicate that the performance of the MLACO approach was less
sensitive to its parameter setting for a coarser level problem than that
for a finer level problem.
6. Conclusion

In this study, a novel multilevel ACO approach (MLACO) has been
developed to solve the CFTPP. The approach was designed to use a
set of increasingly coarser level graphs to condense global level
information for efficient handling of large-scale applications by the
ACO algorithm. It also uses parameter domain of coarser levels to
restrict the search on the domain of finer levels to quickly find
parameters yielding high-quality solutions. Moreover, it uses paths
on coarser levels as initial solutions of the finer levels for a more
rapid ACO algorithm convergence to optimal or near-optimal solu-
tions and avoid initial random solution search on high-cost paths.
The salient feature of the developed MLACO approach is that these
beneficial features can be readily extended to other FCTP and other
optimization problems with underlying graph structures.

The developed approach was able to find near-optimal solutions
with a significant reduction of computing time for the 20 CFTPP
instances, which had similar topology and complexity as real-world
problems. These results indicate the great potential of the MLACO
approach to serve as a generalized framework to solve large-scale,
real-world transportation problems. Lastly, in the case of FTPP
applications, by the use of constraints, it allows the incorporation of
increasingly important social and environmental aspects into
transportation planning to provide managers with economically
efficient and environmentally sound transportation alternatives.
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